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Abstract

This is a summary of lectures given during the first week of the summer
school entitled ”Next generation of quantum information scientists. Series
of international schools for students in Gdansk”. Presented notes are
suitable for students who think about doing their master’s in quantum
computation and information from the perspective of theoretical computer
science.
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1 Introduction

Quantum mechanical processes can be exploited to provide new modes of infor-
mation processing that are beyond the capabilities of any classical computer.
This leads to remarkable new kinds of information-theoretic protocols which
were previously deemed impossible as well as algorithms (so-called quantum al-
gorithms) that can offer a dramatically increased efficiency for the execution of
some computational tasks. In addition to such potential practical benefits, the
study of quantum information and computation has great theoretical interest,
combining concepts from information theory, computational complexity theory
and quantum physics to provide striking fundamental insights into the nature
of these disciplines.

2 Introduction to the formalism of quantum in-
formation theory

Quantum theory is an ensemble of tools that enable the mathematical descrip-
tion of Nature. We concentrate on the three most essential notions with which
we associate physical objects and situations i.e. states, observables and the
theory of measurement.
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2.1 Quantum state in Hilbert space

2.1.1 Quantum state

In the formalism of quantummechanics we describe physical systems using quan-
tum states. Quantum state, denoted with a wave function procures a complete
description of a such a system. E.g. a spinless particle is described with a wave
function ψ(r⃗, t) where r⃗ can denote any parameter that changes in the given
time t. The choice of parameter r⃗ depends on the phenomena that we aim to
describe. The wave function “symbolises” the wave-particle duality of physical
objects and it encodes the amplitude of probability density of the particle being
in the range (r⃗, r⃗ + δr⃗) in the time (t, t + δt). Thus, the description of a state
with the wave function has fully probabilistic character. Such a interpretation
imposes the following:

• p(wherever, whenever) = 1,

• If r → ∞ then ψ(r⃗, t) → 0,

• |ψ(r⃗, t)|2 <∞ and

• as probabilities sum up to unity:
∫
dp = 1 and

∫
dp =

∫
R3 d

3r|ψ|2 we have∫
R3 d

3r|ψ|2 = 1 what means that ψ is normalised.

For simplicity from now on we will simplify the notation and denote ψ(r⃗, t)
as ψ. The analysis of ψ is strictly related to the linear space L2, in which ψ
has properties listed above. The linearity of implies that the L2 superposition
principle applies: if ϕ1 and ϕ2 ∈ L2 their superposition (up to the normalisation
constant) reads

ϕ1 + ϕ2 = ϕ3 ∈ L2.

2.1.2 Scalar product of wave functions in L2

In L2 we introduce the scalar product (., .) such that ∀ ψ and ϕ ∈ L2 we have

(ϕ, ψ) =

∫
R3

d3r ϕ∗ψ ∈ C, (1)

where the subscript ∗denotes the complex conjugate. The scalar product is

2.2 Dirac notation and some properties of Hilbert space

2.2.1 Dirac notation

You cannot deduce it from the previous sections but quantum mechanical math-
ematical expressions are, indeed, quite complex In order to simplify the notation
from now on we will use “bra-ket” notation introduced by Dirac that nowadays
is commonly used in quantum optics and quantum information theory. The
basic idea is as follows: for any quantum state ψ(r⃗, t) we assign a ray, that i.e.:
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an equivalence class of vectors that differ by multiplication by a complex scalar.
In Dirac notation a vector is denoted by a ”ket” |.⟩. We have:

L2 ∋ ψ(r⃗, t) → |ψ⟩ ∈ H. (2)

Note that |ψ⟩ does not depend anymore of any specific parameter. Also accord-
ing to the definition of a state given above |ψ⟩ and eiθ |ψ⟩ are equivalent. Here
we call θ a global phase that is irrelevant. Hilbert space is of L2 type so the
superposition principle applies i.e. if |ψ1⟩ and |ψ2⟩ ∈ H than

|ψ1⟩+ |ψ2⟩ = |ψ3⟩ ∈ H

.
The complex conjugate of a ”ket” is called ”bra”. We have:

|ψ⟩∗ = ⟨ψ| ∈ H∗, (3)

where H∗ is the dual Hilbert space of linear functionals.

2.2.2 Scalar product and norm in Hilbert space

Hilbert space is an abstract vectorial space over complex numbers (C). It is
equipped with the scalar product : ∀ |ψ⟩ , |ϕ⟩ ∈ H the scalar product ⟨.|.⟩ of
two vectors reads

⟨ψ|ϕ⟩ ∈ C.

It has the following properties:

• positive: ⟨ψ|ψ⟩ > 0 if |ψ⟩ ≠ 0.

• linear: ⟨λ1ϕ1 + λ2ϕ2|ψ⟩ = λ∗1 ⟨ϕ1|ψ⟩+ λ∗2 ⟨ϕ2|ψ⟩,

• skew-symmetric: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗

Also in Hilbert the space scalar product encodes the norm of |ψ⟩

|| |ψ⟩ || =
√
⟨ψ|ψ|ψ|ψ⟩. (4)

This norm shares similar properties as well-known Euclidian norm in R3 i.e.:

• positivity || |ψ⟩ || > 0 if ψ ̸= 0

• linearity:∀λ ∈ C we have |λ1 |ϕ1⟩ ||+λ2 |ϕ2⟩ || = |λ1| || |ϕ1⟩ ||+ |λ2| || |ϕ2⟩ ||

• and the triangle inequality is fulfilled:|||ϕ+ ψ⟩|| ≤ || |ϕ⟩ ||+ || |ψ⟩ ||

Obviously, due to the probabilistic character of quantum state |ψ⟩ we have:
|| |ψ⟩ || = 1 Also in Hilbert space Cauchy-Schwartz inequality holds:

| ⟨ϕ|ψ|ϕ|ψ⟩ | ≤ || |ϕ⟩ |||| |ψ⟩ ||. (5)
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2.2.3 Completeness in Hilbert space

We specify that we are going to consider only finite-dimensional Hilbert space
that is enough for our use. Quantum information happens in the d× d dimen-
sional space. The Hilbert space of the dimension d will be denoted as Hd or
dimH = d.

Still,it is important to remember that phenomena described with quantum
physics in general require infinite dimensional Hilbert space. It is then of key
importance to insure that we are able to reach any point in Hilbert space,
e.g. perform any measurement on any quantum state from this space. Such a
property is guaranteed by the completeness of Hilbert space. A linear space is
called complete if each Cauchy series {|xi⟩}∞i=1 it is convergent in this space i.e.

∀ {|xi⟩}∞i=1 ∈ H, if for subscripts m and n lim
n,m→∞

and ⟨xn − xm|xn − xm⟩ = 0

then ∃ |x⟩ ∈ H such that lim
n→∞

⟨x− xn|x− xn⟩ = 0

.

2.3 Orthonormal basis

Let us recap the properties of |ψ⟩ in Dirac notation:

• |ψ⟩ ∈ H,

• || |ψ⟩ || = 1 =
√

⟨ψ|ψ⟩,

• |ψ⟩ and ϕ ∈ H also |ψ⟩+ |ϕ⟩ ∈ H.

In Hilbert Hd space we define an orthogonal basis {|xi⟩}di=1 ∈ H such that
⟨xi|xj⟩ = δij and || |xi⟩ || = 1.

Any state |ψ⟩ can be decomposed in any orthonormal basis:

|ψ⟩ =
d∑
i=1

ci |xi⟩ , (6)

where ci ∈ C are complex coefficients given by: ci = ⟨xi|ψ⟩. These coefficients
are uniquely defined by the basis {|xi⟩}di=1 i.e.: the basis is complete. Let us
check the completeness of the orthonormal basis in Hd :

|ψ⟩ =
d∑
i=1

ci |xi⟩ =
d∑
i=1

⟨xi|ψ⟩ |xi⟩ =
d∑
i=1

〈
xi

∣∣∣∣∣∣
d∑
j=1

djxj

〉
|xi⟩

=

d∑
i=1

d∑
j=1

dj ⟨xi|xj⟩ |xi⟩ =
∞∑
j=1

djδji |xi⟩ =
d∑
i=1

di |xi⟩ .

Thus an orthonormal basis {|xi⟩}di=1 is complete and an arbitrary quantum |ψ⟩
has a unique representation in {|xi⟩}di=1 in Hd.
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2.4 Qubit

From now we concentrate on 2-dimensional Hilbert space H2. This a handy
tool that allows us to build models with two-level systems e.g. two-level atoms,
polarised photons, ions traps, spin 1

2 particles etc.
In this space we define a qubit:

|ψ⟩ = α |0⟩+ β |1⟩ , (7)

where {|0⟩ , |1⟩} is an orthonormal basis called computational (or standard) basis
and α and β ∈ C are coefficient such that satisfy the normalization condition of
ψ i.e. |α|2+|β|2 = 1. The physical meaning of computational basis is determined
by the situation that we want to describe: it can be either the basis of spin up
and spin down |0⟩ := |↑⟩ and |1⟩ := |↓⟩ for ion trap models, or polarisation basis
e.g. |0⟩ := |H⟩ and |1⟩ := |V ⟩ for photons.

2.5 Quantum observables

An observable is a property of a state that can be (at least in theory) observed.
Examples of observables are position and momentum. In quantum theory an
observable is represented with an operator denoted e.g. by Â that is a linear
map such that:

H ∋ |ψ⟩ → Â |ψ⟩ = |ψ′⟩ ∈ H.

We shall assume that observables are square matrices so they have their
eigenvectors |v⟩ and eiegenvalues λ:

Â |v⟩ = λ |v⟩ .

Apart from that we need another reasonable assumption. In quantum theory,
observables are represented with normal operators i.e. ÂÂ† = Â†Â, where †
denotes Hermitian conjugate. For normal operators the set of eigenvectors is
complete - what has a very precise physical meaning. It ensures that sure that
the experiment (represented with Â) can be modelled consistently;

The operators that we will be dealing with have some inner structure and
are constructed out of “smaller” objects.

In the further sections we discuss examples the decomposition of linear op-
erators useful in quantum information theory in order to understand its inner
structure and physical meaning.

Having observable defined we can calculate its expectation value denoted by
⟨.⟩ for an arbitrary quantum state |ψ⟩〈

Â
〉
ψ
= ⟨ψ|Â|ψ⟩ = Tr

[
Â |ψ⟩⟨ψ|

]
,

where |ψ⟩⟨ψ| is a matrix representation of |ψ⟩ and Tr[.] denotes trace. We will
discuss the trace operation in further sections.
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2.6 Mathematical digression: trace and its properties

2.7 Hermitian observables

The most intuitive observables in quantum theory are considered to be hermitian
i.e. Â is such that Â = Â†. The hermitianity of Â ensures that eingenvalues
λ ∈ R. Even more, the hermitianity ensures that the expectation value Â for a
given quantum state |ψ⟩ is also a real number〈

Â
〉
ψ
= ⟨ψ|Â|ψ⟩ = r ∈ R.

Thus hermitian operator Â is an intuitive mathematical tool to describe an
observable that is supposed to represent a measurable, physical quantity. All
experimental equipment have scales in real numbers!

2.8 Special case of hermitian observable: Projector

Here we discuss the special observables that are projectors i.e.

P̂ = P̂ † = P̂ P̂ † = P̂ 2

Note that every quantum state given by |ψ⟩ has its projector . It is easy to
check that |ψ⟩⟨ψ| is in fact a projector

|ψ⟩⟨ψ| = |ψ⟩⟨ψ| (|ψ⟩⟨ψ|)† = |ψ⟩⟨ψ| |ψ⟩⟨ψ| because ⟨ψ|ψ⟩ = 1.

This fact has the following consequence

∀ |ψ⟩ ∈ H ∃ P̂ψ = |ψ⟩⟨ψ| : P̂ψ |ψ⟩ = |ψ⟩

Thus, every |ψ⟩ from H there exist at last in its theoretical description such a
projector P̂ψ that acting on |ψ⟩ gives a certain result with probability equal to

unity. i.e ⟨P̂ψ⟩ψ = ⟨ψ|P̂ψ|ψ⟩ = 1:

2.9 Spectral theorem

As mentioned before linear operators have their inner structure. Spectral theo-
rem determines the structure of a normal operators. Here we present the version
of spectral theorem for finite dimensional Hilbert spaces. Let dimH be the di-
mension of Hilbert space. Let n be the number of eigenvalues of considered
operator Â i.e. {λi}ni=1 and subscripts i = 1, 2, ....n ≤ dimH. Operator Â has
the following spectral representation:

Â =

n∑
i

λiP̂λi
, (8)

where P̂λi
are projectors on the particular subspaces Hλi

the form H and they
are uniquely related with λi. The set of eigenvalues {λi}ni=1 is called the spec-

trum of Â.
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2.10 Postulates of quantum mechanics

Quantum mechanics, also known as quantum physics or quantum theory, is a
fundamental theory in physics that describes the behavior of matter and energy
at the smallest scales. It is formulated based on a set of postulates or principles
that lay the foundation for understanding quantum systems. These postulates
are the fundamental rules or axioms of quantum mechanics. Here are the key
postulates of quantum mechanics:

1. State Space: Quantum systems are described by state vectors, also known
as wave functions, denoted by the symbol |ψ⟩. These state vectors exist
in a complex vector space known as a Hilbert space, typically denoted as
H.

2. Superposition Principle: The superposition principle states that a quan-
tum system can exist in a linear combination of multiple states, and each
state contributes with a certain probability amplitude. Mathematically,
if |ψ1⟩ and |ψ2⟩ are valid states, then α|ψ1⟩ + β|ψ2⟩ is also a valid state,
where α and β are complex numbers.

3. Quantization of Observables: Physical observables in quantum mechanics,
such as position, momentum, energy, and angular momentum, are repre-
sented by operators. These operators act on the state vectors, and their
eigenvalues correspond to possible measurement outcomes.

4. Measurement Postulate: When a quantum system is measured, the mea-
surement process ”collapses” the state vector to one of its eigenstates,
with probabilities determined by the squared magnitudes of the probabil-
ity amplitudes associated with the eigenstates.

5. Time Evolution: The time evolution of a quantum system is described by
the Schrödinger equation, which governs how the state vector |ψ⟩ changes
over time. The Schrödinger equation is typically written as

Ĥ|ψ⟩ = ih̄
d |ψ⟩
d t

, (9)

where Ĥ is the Hamiltonian operator, and h̄ (h-bar) is the reduced Planck
constant.

6. Quantum Entanglement: Quantum entanglement is a fundamental prop-
erty where the quantum states of two or more particles become correlated
in such a way that the measurement of one particle instantaneously de-
termines the state of the others, even if they are physically separated.

7. Postulate of Quantum Measurement (Alternative to 4): This postulate
specifies that measurement operators corresponding to observables are
Hermitian (self-adjoint) operators. Upon measurement, the system’s state
collapses to one of the eigenstates of the measurement operator.
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8. Projection Postulate: After measurement, if a system is found to be in
an eigenstate |Φ⟩ of an observable, the post-measurement state is the
projection of the original state onto |Φ⟩.

3 Framework of quantum mechanics and quan-
tum information

3.1 Pure and mixed states

In quantum mechanics, states of a quantum system are categorized into two
main types: pure states and mixed states. These two types of states represent
different levels of knowledge and information about the system.

Definition 1. (Pure States) A pure quantum state is a state for which you have
complete and definite information. Mathematically, a pure state is represented
by a ket vector |ψ⟩ in a Hilbert space.

Pure states are described by a single ket vector |ψ⟩, and all measurements
performed on the system will yield the same outcome, given by the eigenvalues
of the corresponding observables. The probability distribution for measure-
ment outcomes is deterministic for pure states, meaning that the outcome of a
measurement is known with certainty. Pure states are often used to describe
idealized or well-prepared quantum systems.

Definition 2. (Mixed States) A mixed quantum state is a statistical ensemble
or a probabilistic combination of pure states. It represents a situation where
you don’t have complete knowledge of the system, and you need to describe it
statistically.

Mixed states are described by a density operator (also called a density ma-
trix) ρ, which is a Hermitian, positive-semidefinite matrix that represents the
statistical mixture of pure states. Measurements performed on a system in a
mixed state yield probabilistic outcomes. The probabilities of obtaining spe-
cific measurement results are given by the trace of the product of the density
operator and the corresponding observable operator. Mixed states are used to
describe situations where you have incomplete information about the system,
such as when the system is in a statistical ensemble of different pure states with
associated probabilities. The mathematical tool that allows us to represent
mixed states is a density matrix given by

ρ =

n∑
i=1

pi |ψi⟩⟨ψi| , (10)

where |ψi⟩⟨ψi| are (pure states) projectors and the coefficients pi denote the prob-
abilities that given |ψi⟩⟨ψi| appears in the mixture ρ. The probabilistic interpre-
tation of quantum state imposes the normalisation condition so

∑n
i=1 pi = 1.

In reference to the definition of a mixed state (10) we can say that pure state
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|ψ⟩ is such a state that cannot be decomposable as a convex combination of
projectors i.e. |ψ⟩ ≠

∑n
i=1 pi |ψi⟩⟨ψi|. Still, |ψ⟩ can be a superposition of other

pure states i.e |ψ⟩ =
∑n
i=1

√
pi |ψ⟩ and then

∑n
i=1

√
pi = 1.

The distinction between pure and mixed states in quantum mechanics is
based on the level of information and certainty you have about a quantum sys-
tem. Pure states represent situations where you have complete knowledge and
deterministic outcomes, while mixed states represent situations where you have
incomplete knowledge and probabilistic outcomes due to a statistical mixture of
pure states. Mixed states are often encountered in real-world quantum systems,
especially when dealing with systems that are not perfectly isolated or prepared.

Such a description of a physical object is very idealised, because we assume
that we have e.g. isolated ideally prepared atom or photon. We call |ψ⟩ a pure
state. However, in more realistic physical situations we deal not with perfect
copies of one isolated atoms (pure states) but with the ensemble of atoms or
photons that correspond to the statistical mixture of not necessarily perfect
copies of the state |ψ⟩ and even some additional occasionally measuremd states
(e.g. the environment, because the state is not perfectly isolated). Then noise
and losses shall be take under consideration. Such a ensemble is called mixed
state and it is given with the convex combination (not superposition!!!) of pure
states (that can be in superposition).

Here already arises the great difference between the superposition (pure
state) and mixed states (convex combination of pure states). Firstly, let us
distinguish here the two different levels of lack of the knowledge regarding the
quantum state. Consider a (pure) qubit: |ψ⟩ = 1√

2
(|0⟩ + |1⟩). Before taking a

measurement our lack of the knowledge whether |ψ⟩ is in |ψ1⟩ or |ψ2⟩ is funda-
mental i.e. we do not have information whether |ψ⟩ is in |0⟩ or |1⟩. This is the
most intrinsic level of ”not-knowing” about the state. But that is also another
”statistical lack of knowledge” of quantum ensemble, that less fundamental that
lack of knowing resulting from superposition. But on the less fundamental level
we still have another lack of knowledge that refers to the probabilistic character
of the mixture ρ. These two kinds of lack of knowledge occur independently to
each other.

Moreover, the density matrix formalism comes in handy for the description
of interactions between the state and environment (bath) including noise and
losses - we will study theses cases in the following sections.

3.1.1 Properties of density matrix

The density matrix ρ can be used for the description of pure and mixed states.
It enable more general description of the state than the vector |ψ⟩ that can be
used only for pure states. Still, ρ and |ψ⟩ share the following properties:

• ρ ≥ 0,

• ρ = ρ†,

• Tr ρ = 1.
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Also, the spectral decomposition (8) can be applied for ρ :

ρ =

n∑
i=1

λi |xi⟩⟨xi| , (11)

where sumn
i=1λi = 1 because Tr ρ = 1 and λi ≥ 0because ρ ≥ 0. The set of

vectors {|xi⟩}ni=1 is orthonormal.
Note that every pure state |ψ⟩ in the matrix representation is a projector

itself |ψ⟩⟨ψ|, but a mixed state ρ is not. We use this observation to distinguish
pure from mixed states by calculating Tr ρ2. For every pure states we have
Tr(|ψ⟩⟨ψ|)2 as |ψ⟩⟨ψ| is a projector while for a mixed state Tr ρ2 < 1.

3.1.2 Bloch sphere representation

Let us introduce Pauli operators:

σ1 =

(
1 0
0 1

)
, σ2 =

(
1 0
0 1

)
, σ3 =

(
1 0
0 1

)
.

They are 2× 2 Hermitian operators detσi = −1 and Trσi for i = 1, 2, 3.
Pauli operators σi together with the unity matrix denoted as σ0 = 1 span

a subspace for all 2× 2 Hermitian operators. Every 2× 2 self-adjoint operator
(Â) can be decomposed as follows:

Â =

4∑
i=0

ciσi, (12)

where ci ∈ C.
Let us introduce σ⃗ = (σ1, σ2, σ3). Formula (12) can be put as:

Â = c0σ0 + n⃗σ⃗, (13)

where n⃗ is a 3-dimensional unit vector. Obviously the same representation
applies to the 2× 2 density matrix:

3.2 The description of composed system

Till now we were considering a system descring one physical object e.g.: a spin-
less particle, or a photon. Nevertheless, it is time to stress that the correlations
and interactions between systems are of great importance for quantum mechan-
ics, quantum information theories and its applications. In order to merge two
systems together we introduce a tensor product and denote it as ⊗. Let A and
B be two (sub)systems, the complex system (A+B) is geven by:

(A+B) = A⊗B. (14)
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3.3 Partial trace

The partial trace is a mathematical operation commonly used in quantum me-
chanics to extract information about a subsystem of a composite quantum sys-
tem. When you have a composite quantum system consisting of multiple sub-
systems, the partial trace allows you to describe the state of one subsystem
while ignoring the other subsystems. This operation is particularly useful in
quantum information theory, quantum entanglement, and studying the reduced
density matrix of a subsystem.

The partial trace is defined as follows:
Given a composite quantum system with a joint or global density operator ρ

that describes the entire system, and each subsystem is associated with a Hilbert
space Hi, the partial trace over a particular subsystem (let’s say subsystem i)
is denoted as Tri and is defined as follows:

Tri(ρ) =
∑
j

⟨.j|ρ|i⟩. (15)

Here, |i⟩ and ȷ⟩ are basis states of the Hilbert space Hi for subsystem i. The
partial trace operation involves taking the inner product of the basis states |i⟩
and ȷ⟩ and summing over all possible values of j.

The result of the partial trace is a density operator that describes the re-
duced state of the subsystem i, effectively ”tracing out” the degrees of freedom
associated with the other subsystems. This reduced density operator is often
denoted as ρi and represents the state of subsystem i when the entire system is
in state ρ.

Mathematically, the reduced density operator for subsystem i is given by:

ρi = Tri(ρ). (16)

Properties and Applications of the Partial Trace:
Reduced Density Matrix: The partial trace operation allows you to find

the reduced density matrix of a subsystem, which can be used to calculate
observables and properties of that subsystem independently of the rest of the
system.

Entanglement: It is crucial for studying entanglement in composite systems.
The reduced density matrix can help determine whether subsystems are entan-
gled or separable.

Mixed States: When dealing with mixed states (statistical ensembles), the
partial trace is used to find the reduced density matrix for each subsystem.

Quantum Channels: In the context of quantum channels, the partial trace
is used to describe the evolution of a subsystem when only partial information
is available.

Quantum Information: The partial trace is a fundamental tool in quan-
tum information theory for analyzing quantum states, quantum operations, and
quantum channels in multipartite systems.

In summary, the partial trace is a mathematical operation that plays a crucial
role in quantum mechanics and quantum information theory, allowing physicists
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and researchers to focus on specific subsystems within a composite quantum
system.

3.4 Purification

Purification is a concept in quantum mechanics used to represent a composite
quantum system in a way that emphasizes its entanglement structure and allows
for a more complete description of the system. The purification process involves
introducing an auxiliary quantum system (usually called a ”purifying system”
or ”ancilla”) in such a way that, when combined with the system of interest,
it results in a pure quantum state. This is particularly useful for understand-
ing entanglement properties, performing quantum operations, or studying the
environment’s effects on a quantum system.

Here’s a mathematical description of the purification process. Let’s start
with a mixed state represented by a density operator ρ, which acts on a finite-
dimensional Hilbert space H. The density operator ρ is Hermitian (self-adjoint)
and positive semidefinite, and it describes a quantum system in a mixed state.
Mathematically, it can be expressed as:

ρ =
∑
i

pi|ψi⟩⟨ψi|, (17)

where |ψi⟩ represents pure states of the system, pi are the corresponding proba-
bilities, and

∑
i pi = 1 to ensure trace normalization. Now, to perform purifica-

tion, you introduce an auxiliary system, often referred to as an ancillary system
or purifying system. This auxiliary system resides in a Hilbert space H′ such
that the composite system H⊕H′ is in a pure state. The composite pure state
is represented as:

|Ψ⟩ =
∑
i

√
pi|ψi⟩ ⊗ |ϕi⟩, (18)

where |ϕi⟩ are orthonormal states in H′. The crucial idea here is that |Ψ is a
pure state, and it contains the information about ρ. The original mixed state ρ
can be obtained by taking the partial trace over the ancillary system H′:

ρ = TrH′(|Ψ⟩⟨Ψ|) =
∑
i

pi|ψi⟩⟨ψi|. (19)

In this expression, TrH′ represents the partial trace operation over the ancillary
system H′.

The purification process involves introducing an ancillary system and cre-
ating a composite pure state |Ψ⟩ that contains the same information as the
original mixed state ρ. The purification allows for a more complete and elegant
description of the quantum system, and it is particularly useful for understand-
ing entanglement properties and performing various quantum operations.

In summary, purification is a powerful concept in quantum information the-
ory and quantum mechanics because it allows for a more elegant and unified
treatment of quantum systems. It simplifies the description of entanglement,
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quantum operations, and various quantum protocols. Additionally, it provides
a theoretical framework for understanding quantum correlations and the nature
of quantum entanglement.

3.5 Fidelity between quantum sates

Quantum fidelity, often denoted as F (ρ, σ), is a mathematical measure of the
similarity or closeness between two quantum states, ρ and σ. It quantifies how
”close” or ”similar” the two quantum states are in terms of their quantum
properties. High fidelity indicates a high degree of similarity, while low fidelity
indicates dissimilarity between the states.

The quantum fidelity F (ρ, σ) between two quantum states, ρ and σ, is de-
fined as follows:

F (ρ, σ) = Tr

[√√
ρσ

√
ρ

]2
, (20)

where Tr denotes the trace (the sum of the diagonal elements) of the matrix.√
ρ denotes the square root of a state ρ. The square roots in this expression

are well-defined because ρ and
√
ρσ

√
ρ are for positive semidefinite matrices,

and the square root of a positive semidefinite matrix is defined via the spectral
theorem. Properties and Interpretation of Quantum Fidelity:

1. Range: Quantum fidelity values range from 0 to 1, with 0 indicating com-
plete dissimilarity (orthogonal states) and 1 indicating perfect similarity
(identical states).

2. Maximal Fidelity: The fidelity is maximized when ρ and σ are identical
states, resulting in F (ρ, σ) = 1.

3. Minimizing Fidelity: Fidelity is minimized when ρ and σ are orthogonal
states, resulting in F (ρ, σ) = 0.

4. Triangle Inequality: Fidelity satisfies the triangle inequality, meaning
that for any three quantum states ρ, σ, and τ , F (ρ, τ) ≤ F (ρ, σ)+F (σ, τ).

5. Physical Interpretation: Fidelity can be thought of as a measure of the
overlap or similarity between the wavefunctions of the two quantum states.
In quantum information theory, it is often used to quantify the quality of
quantum operations, quantum channels, or quantum measurements.

6. Quantum Information Applications: Quantum fidelity plays a critical
role in quantum information theory, quantum error correction, quantum
state discrimination, and quantum communication protocols. For exam-
ple, it is used to measure how well a quantum channel preserves quantum
states or to quantify the performance of quantum gates in quantum com-
puting.

In summary, quantum fidelity is a mathematical tool for quantifying the sim-
ilarity or closeness between two quantum states. It is an essential concept in
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quantum information theory and quantum technologies, providing a way to as-
sess the quality of quantum processes and operations.

3.6 Quantum entanglement and entanglement criteria

3.6.1 Entanglement of pure states

Entanglement is a fundamental and intriguing feature of quantum mechanics
that arises when two or more quantum systems are described by a composite
pure state that cannot be factorized into individual states for each subsystem.
In other words, entanglement is a phenomenon where the properties of one
quantum system become correlated with the properties of another, even when
the systems are spatially separated. Here’s an explanation of entanglement in
the context of a pure state:

1. Composite Pure State:

Consider a composite quantum system composed of two or more subsys-
tems. Mathematically, this can be represented as |ψ⟩, where |ψ⟩ is a pure
state in a joint Hilbert space H that describes the entire system.

2. Factorization:

If the pure state |ψ⟩ can be expressed as a simple tensor product of in-
dividual states, |ψ⟩ = |A⟩ ⊗ |B⟩, then the system is not entangled, and
it can be described independently as the product of the states for each
subsystem. Such states are called separable states.

3. Entangled States:

If, however, |ψ⟩ cannot be expressed as a simple tensor product of indi-
vidual states, |ψ⟩ ≠ |A⟩ ⊗ |B⟩, then the system is entangled. In this case,
the properties of one subsystem cannot be described independently of the
other subsystem(s). Entangled states exhibit non-classical correlations
that go beyond classical physics. Entanglement is characterized by the
presence of quantum correlations between the subsystems. When mea-
surements are performed on one subsystem, the outcomes are correlated
with the measurements on the other subsystem(s) in a way that cannot
be explained by classical physics. These correlations can be stronger than
any correlations achievable classically.

4. Bell States:

A famous example of an entangled state is the Bell state, which is maxi-
mally entangled. One of the Bell states is:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩). (21)

If you measure one qubit of an entangled Bell state and find it in the |0⟩
state, you instantly know that the other qubit is in the |0⟩ state as well,
no matter how far apart the two qubits are.

15



Entanglement is a resource in quantum information processing and quantum
computing and is crucial for many quantum protocols, such as quantum telepor-
tation, quantum cryptography, and quantum entanglement swapping. Under-
standing and harnessing entanglement is a key element of the power of quantum
mechanics in processing information and performing quantum operations that
have no classical analogs.

3.6.2 Entanglement of mixed states

Entanglement is not limited to pure states in quantum mechanics; it can also
exist in mixed states. Mixed states represent situations where a quantum sys-
tem is in a statistical mixture of pure states. In the context of mixed states,
entanglement describes the presence of quantum correlations between subsys-
tems that cannot be explained classically. Here’s how entanglement works in
mixed states.

As we said earlier a mixed state ρ is represented by a density operator rather
than a pure state ket vector. Mathematically, it can be expressed as a convex
combination of pure states: ρ =

∑n
i=1 pi |ψi⟩⟨ψi|, where |ψi⟩⟨ψi| are pure states

(possibly entangled), and pi are probabilities such that
∑
i pi = 1. Entanglement

can still exist in mixed states when the density operator ρ cannot be expressed
as a convex combination of product states. In other words, if there is no way
to write ρ as ρ =

∑
i piρi ⊗ σi, where ρi and σi are density operators for the

individual subsystems, then the mixed state ρ is entangled.
Measuring the degree of entanglement in a mixed state is more challenging

than in pure states. Various measures and entanglement criteria have been de-
veloped to quantify entanglement in mixed states, such as entanglement entropy,
concurrence, and negativity.

Entanglement in mixed states is a valuable resource for quantum technologies
and quantum information processing, similar to pure state entanglement. Mixed
states often arise in realistic scenarios, such as due to decoherence and interac-
tions with the environment. Understanding and characterizing entanglement in
mixed states is crucial for the design and analysis of quantum protocols, quan-
tum error correction, and quantum communication in real-world applications.
It’s important to note that the study of entanglement in mixed states is more
complex than in pure states because mixed states can exhibit a broader range of
behaviors, including classical correlations and noise. Detecting and quantifying
entanglement in mixed states is an active area of research in quantum informa-
tion theory. Various tools and techniques have been developed to address this
complexity and exploit entanglement for practical quantum technologies.

3.7 Quantum channel

The quantum channel formalism is a mathematical framework used in quantum
mechanics and quantum information theory to describe the evolution of quan-
tum states and operations on quantum systems. Quantum channels are used
to model various physical processes, such as quantum measurements, quantum
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communication, and the effects of noise and decoherence on quantum systems.
They provide a way to mathematically represent how a quantum state trans-
forms under the influence of these processes.

Quantum channels are often described using superoperators, which are lin-
ear maps Φ that act on density operators (also called density matrices). A
density operator represents the quantum state of a system. A density operator
ρ is a Hermitian, positive-semidefinite matrix that describes a quantum state.
It can be written as ρ = |ψ⟩⟨ψ| for pure states and as a convex combination
of pure states for mixed states. Quantum channels represent quantum opera-
tions or transformations that take an input quantum state ρ and produce an
output quantum state ρ′ = Φ(ρ). Mathematically, a quantum channel Φ can
be represented as a superoperator that acts on the density operator ρ as Φ(ρ).
Quantum channels are required to be trace-preserving (TP), which means that
they preserve the trace (the sum of the diagonal elements) of the density oper-
ator. This ensures that probabilities are conserved. Quantum channels should
also be completely positive (CP), which is a condition that ensures the positivity
of the density operator remains intact.

We have many ways of describing quantum channels. For example, quantum
channels can be expressed in terms of Kraus operators. A quantum channel Φ
can be written in the Kraus representation as follows:

Φ(ρ) =
∑
i

KiρK
†
i , (22)

where Ki are the Kraus operators satysfying relation
∑
iK

†
iKi = 1, and †

denotes the conjugate transpose.
Different approach for describing quantum channels is the Stinespring dila-

tion theorem. It is a mathematical theorem that provides a way to represent
certain types of quantum operations as unitary operations on a larger Hilbert
space, including the introduction of an auxiliary system. This theorem is par-
ticularly relevant in the study of quantum channels and quantum operations.

The Stinespring dilation theorem can be formally stated as follows:

Theorem 1. (Stinespring Dilation) Given a completely positive trace-preserving
(CPTP) linear map Φ, which represents a quantum channel, there exists a larger
Hilbert space HE and a unitary operator U on H⊕HE such that, for any input
state ρ on H, the action of Φ on ρ can be represented as:

Φ(ρ) = TrE
[
U(ρ⊕ |0⟩ E⟨0|)U†] , (23)

where Φ(ρ) is the output state after the application of the quantum channel. H
is the original Hilbert space. HEis an auxiliary Hilbert space. U is a unitary
operator on the combined Hilbert space H⊕HE. |0⟩ E is the initial state of the
auxiliary system HE. TrE represents the partial trace over the auxiliary system
HE.

In other words, the Stinespring dilation theorem tells us that any quantum
channel Φ can be represented as the action of a unitary operator on a larger com-
posite system that includes both the original quantum system and an auxiliary
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system (usually referred to as an ”ancilla” or ”environment”). The unitary op-
erator U allows the quantum channel to be realized as a unitary transformation
on this composite system.

The Stinespring dilation theorem is a fundamental tool in the study of quan-
tum channels and quantum operations, and it has applications in quantum in-
formation theory, quantum error correction, and quantum communication. It
provides a way to understand and analyze the behavior of quantum channels in
a broader context and is a key result in the mathematical framework of quantum
mechanics.

Examples of Quantum Channels:

1. Unitary Evolution: A unitary quantum channel represents a reversible
transformation and is described by a unitary operator U . It can be written
as Φ(ρ) = UρU†.

2. Depolarizing Channel: This channel models the effect of noise and
randomizing quantum states. It acts on a quantum state by the following
way:

Φp(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ). (24)

Alternatively, Φp(ρ) replaces p replaces the input with the completely
mixed state 1/2 with probability q = 4p/3:

Φp(ρ) = (1− q)ρ+ q
1

2
. (25)

3. Quantum Measurement: A quantum measurement can be described as
a quantum channel that maps the input state to a set of possible outcomes
with associated probabilities.

Quantum channels can be experimentally characterized through quantum
process tomography, which involves applying known input states to the channel
and measuring the corresponding output states to reconstruct the action of the
channel.

Quantum channels play a crucial role in quantum information processing
tasks, such as quantum teleportation, quantum error correction, and quantum
key distribution. In summary, the quantum channel formalism provides a pow-
erful framework for describing and analyzing the evolution of quantum states
under various physical processes and operations. It is a fundamental tool in
quantum information theory and quantum technologies.

4 Quantum Teleportation

Quantum teleportation is a remarkable quantum information protocol that al-
lows the transfer of the quantum state of one system (usually a qubit) to an-
other, distant system, while destroying the original state in the process. This
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transfer occurs without the physical transfer of particles, making it fundamen-
tally different from classical information transfer. Quantum teleportation is a
crucial component of many quantum communication and quantum computing
protocols.

Prerequisites:

1. Alice (the sender) has a quantum state |ψ⟩ that she wants to teleport to
Bob (the receiver).

2. Alice and Bob share an entangled pair of qubits, typically prepared in one
of the Bell states:

|Φ+⟩ = (|00⟩+ |11⟩)/
√
2, (26)

|Φ−⟩ = (|00⟩ − |11⟩)/
√
2, (27)

|Ψ+⟩ = (|01⟩+ |10⟩)/
√
2, (28)

|Ψ−⟩ = (|01⟩ − |10⟩)/
√
2. (29)

Quantum Teleportation Steps:

1. Entanglement Measurement:

• Alice performs a Bell measurement on her quantum state Ψ⟩ and her
part of the entangled pair (let’s call it qubit A). The Bell measure-
ment consists of applying a set of quantum operations.

• The result of the Bell measurement is two classical bits, which we’ll
denote as a and b.

2. Classical Communication: Alice sends the two classical bits (a and b)
to Bob through a classical communication channel.

3. Conditional Operations:

• Based on the values of the received classical bits (a and b), Bob
performs one of four possible quantum operations on his part of the
entangled pair (let’s call it qubit B):

– If (a, b) = (0, 0), Bob applies the identity operation (do nothing).

– If (a, b) = (0, 1), Bob applies the X gate (bit-flip).

– If (a, b) = (1, 0), Bob applies the Z gate (phase-flip).

– If (a, b) = (1, 1), Bob applies both the X and Z gates.

• This operation effectively transforms Bob’s qubit B into the state
|Ψ⟩, which was originally held by Alice.

Quantum teleportation depends on the prior existence of an entangled pair
of particles. It is a probabilistic process; successful teleportation relies on the
outcome of the Bell measurement. Quantum teleportation is a fundamental
building block for quantum communication and quantum computing, as it allows
for the transmission of quantum information over long distances, overcoming
some of the limitations of classical communication.
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5 Quantum superdense coding

Quantum superdense coding is a quantum communication protocol that allows
two parties, traditionally referred to as Alice and Bob, to send two classical bits
of information using only one qubit and a pre-shared entangled pair of qubits.
It’s a fascinating example of how quantum entanglement can be used to en-
hance communication efficiency. Here’s a step-by-step explanation of quantum
superdense coding.

1. Preparation of an Entangled Pair:

Alice and Bob share an entangled pair of qubits. This entangled pair can
be created using a process such as generating entangled photons. The
entangled pair is typically in one of the four Bell states:

|Φ+⟩ = (|00⟩+ |11⟩)/
√
2

|Φ−⟩ = (|00⟩ − |11⟩)/
√
2

|Ψ+⟩ = (|01⟩+ |10⟩)/
√
2

|Ψ−⟩ = (|01⟩ − |10⟩)/
√
2

(30)

2. Encoding Alice’s Message:

Alice wants to send a two-bit classical message to Bob. Let’s say she
wants to send the message ”10.” To encode her message, Alice performs
one of four possible operations (Pauli operators) on her qubit based on
her message:

• If she wants to send ”00,” she does nothing (identity operator).

• If she wants to send ”01,” she applies the X gate (bit-flip).

• If she wants to send ”10,” she applies the Z gate (phase-flip).

• If she wants to send ”11,” she applies both X and Z gates (bit-flip
followed by phase-flip). This operation transforms Alice’s qubit into
one of the four Bell states, depending on her message.

3. Transmission: Alice sends her qubit to Bob, who now holds both Alice’s
qubit and his own entangled qubit.

4. Decoding by Bob: To decode Alice’s message, Bob performs a Bell
measurement on the two qubits he holds. This measurement distinguishes
between the four possible Bell states. The outcome of the Bell measure-
ment directly reveals Alice’s message:

• If the measurement result is |Φ+⟩, Bob knows that Alice’s message
was ”00.”

• If the measurement result is |Φ− , Bob knows that Alice’s message
was ”01.”

20



• If the measurement result is |Ψ+⟩, Bob knows that Alice’s message
was ”10.”

• If the measurement result is |Ψ−⟩, Bob knows that Alice’s message
was ”11.”

And that’s it! Using just one qubit and an entangled pair of qubits, Alice is
able to convey two classical bits of information to Bob, thanks to the principles
of quantum entanglement and quantum superposition. This protocol demon-
strates the advantage of quantum communication over classical communication
for certain tasks.

6 No-cloning theorem

The no-cloning theorem is a fundamental result in quantum mechanics that
states it is impossible to create an exact copy of an arbitrary unknown quantum
state. This theorem is a consequence of the principles of quantum superpo-
sition and the linearity of quantum mechanics. The theorem has important
implications for quantum information theory and quantum computing.

The no-cloning theorem can be formally stated as follows:

Theorem 2. (No-Cloning Theorem) Given an arbitrary unknown quantum
state |ψ⟩ , it is impossible to create a quantum process or device that can produce
an independent, identical copy of |ψ⟩ , resulting in two identical quantum states,
|ψ⟩ and |ψ⟩ , unless |ψ⟩ is a member of a specific set of orthogonal states, such
as the computational basis states in a qubit system.

Proof. The proof follows from linearity of quantum mechanics and it can be
divided in six steps:

1. Assume Cloning is Possible: Let’s start by assuming that it is possible
to clone an arbitrary unknown quantum state |ψ⟩, meaning we can create
two identical copies of |ψ⟩, resulting in states |ψ⟩ and |ϕ⟩, where |ψ⟩ = |ϕ⟩.

2. Use Linearity of Quantum Mechanics: Since quantum mechanics is a
linear theory, the cloned state can be represented as a linear combination
of |ψ⟩ and |ϕ⟩: |ϕ⟩ = α|ψ⟩+ β|ψ⟩ where α and β are complex coefficients.

3. Normalization Condition: For the cloned state |ϕ⟩ to be normalized
(i.e., to have a probability amplitude sum of 1), we must have |α|2+ |β|2 =
1.

4. Measurement of the Cloned State: Now, let’s consider the measure-
ment of the cloned state |ϕ⟩ in the computational basis, which consists of
the states |0⟩ and |1⟩:

• If |ϕ⟩ = |0⟩, the measurement outcome is |0⟩ with probability |α|2.
• If |ϕ⟩ = |1⟩, the measurement outcome is |1⟩ with probability |β|2.
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5. Measurement of the Original State: At the same time, let’s consider
measuring the original state |ψ⟩ in the computational basis:

• If |ψ⟩ = |0⟩, the measurement outcome is |0⟩ with probability 1 (cer-
tainty).

• If |ψ⟩ = |1⟩, the measurement outcome is |1⟩ with probability 1 (cer-
tainty).

6. Contradiction: Now, here’s where the contradiction arises. If we clone
the original state |ψ⟩ to obtain |ψ⟩ and then measure |ϕ⟩, the probabilities
of the measurement outcomes must match the probabilities of measuring
the original state |ψ⟩. However, we have:

• For the cloned state |ψ⟩, the measurement outcome probabilities de-
pend on α and β.

• For the original state |ψ⟩, the measurement outcome probabilities are
always 1 with certainty.

Since these probabilities cannot match, we have reached a contradiction.
Therefore, the assumption that cloning is possible is invalid.

The contradiction demonstrates that it is impossible to create an exact duplicate
of an arbitrary unknown quantum state. This is the essence of the no-cloning
theorem.

In other words, if you have a quantum state |ψ⟩ that represents some infor-
mation, you cannot create a perfect copy of that state, except in special cases.
Attempting to clone an arbitrary quantum state will result in an inevitable loss
of information.

This no-cloning theorem has several important implications:

1. Quantum Security: Quantum cryptography protocols, such as quantum
key distribution (e.g., BB84 or QKD), rely on the no-cloning theorem to
ensure the security of information transmission. The inability to clone
quantum states makes eavesdropping much more challenging.

2. Quantum Computing: Quantum computers are designed to manipu-
late quantum information in ways that classical computers cannot. The
no-cloning theorem imposes constraints on quantum algorithms, as they
cannot simply copy arbitrary quantum states as classical algorithms copy
classical bits.

3. Quantum Error Correction: Quantum error correction codes are de-
signed to protect quantum information from errors due to decoherence or
other environmental factors. These codes exploit redundancy in quantum
states without violating the no-cloning theorem.
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4. Quantum Teleportation: Quantum teleportation allows the transfer of
quantum information from one location to another without copying the
quantum state itself. It relies on entanglement and Bell measurements to
achieve this, respecting the no-cloning theorem.

5. Quantum Cloning Approximation: Although exact cloning is for-
bidden, approximate cloning can be achieved using quantum cloning ma-
chines. These machines produce clones that are close approximations to
the original state, but they introduce some level of error. Various cloning
strategies aim to optimize the trade-off between fidelity and the number
of clones produced.

In summary, the no-cloning theorem is a fundamental concept in quantum
mechanics that underscores the unique properties and limitations of quantum
information. It has important implications for quantum technologies and secu-
rity protocols, and it sets quantum information apart from classical information
in terms of copying and cloning.

7 BB84 protocol

BB84, short for Bennett-Brassard 1984, is a quantum key distribution (QKD)
protocol that allows two parties, traditionally referred to as Alice (the sender)
and Bob (the receiver), to establish a secure cryptographic key over a potentially
insecure quantum communication channel. The security of BB84 relies on the
principles of quantum mechanics, including the no-cloning theorem and the
uncertainty principle. Below is a mathematical description of the BB84 protocol:

1. Quantum Bit Preparation: Alice selects a random sequence of bits,
which we’ll denote as the ”key” bits (k), and another random sequence of
bits, known as the ”basis” bits (b). Each basis bit (b) indicates how Alice
prepares the corresponding key bit (k):

If b = 0, Alice prepares the qubit in either the |0⟩ state or the |1⟩ state,
randomly chosen. If b = 1, Alice prepares the qubit in either the |+⟩ state
(Hadamard basis) or the |−⟩ state (Hadamard basis), randomly chosen.
The resulting quantum state prepared by Alice can be expressed as:

|ΨA⟩ =
∑
i

|bi⟩ ⊗ |ki⟩. (31)

Here, |bi⟩ represents the basis state for the i−th qubit, and |ki⟩ represents
the key bit for the i−th qubit.

2. Quantum Transmission:

• Alice sends the prepared qubits to Bob over the quantum communi-
cation channel.
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• Due to the properties of quantum mechanics, any eavesdropping by
a third party (Eve) will disturb the qubits, potentially revealing her
presence.

3. Quantum Measurement:

• Upon receiving the qubits, Bob randomly selects basis bits (b′) to
measure each qubit, just as Alice did. This means that, for each
qubit, Bob randomly chooses to measure it in either the computa-
tional basis (b′ = 0) or the Hadamard basis (b′ = 1).

• Bob performs measurements on each qubit, obtaining measurement
results (0 or 1) and records them.

4. Public Announcement of Basis: Alice and Bob publicly announce
which basis bits they used (b and b′, respectively), but they do not reveal
the actual values of these bits.

5. Error Estimation and Data Filtering:

• Alice and Bob compare the basis bits they publicly announced.

• For matching basis bits (b = b′), the corresponding key bits (k and
k′) become part of the final secure key. For non-matching basis bits,
the associated key bits are discarded.

6. Privacy Amplification: To enhance security, Alice and Bob perform
privacy amplification on the remaining key bits to remove any residual
information that might have been acquired by an eavesdropper.

BB84’s security is based on the principles of quantum mechanics, which
make it extremely difficult for an eavesdropper to intercept the quantum states
without leaving detectable traces. Any eavesdropping attempts can be detected
through the mismatch between Alice’s and Bob’s basis choices, leading to a
reduction in the final key size and a secure key exchange.

8 E91 protocol

The E91 protocol, also known as the Ekert 91 protocol, is a quantum key dis-
tribution (QKD) protocol designed to establish a secure cryptographic key be-
tween two parties, traditionally referred to as Alice and Bob, over a potentially
insecure quantum communication channel. The E91 protocol is based on the
phenomenon of quantum entanglement and is one of the early protocols for
quantum key distribution. Below is a mathematical description of the E91 pro-
tocol.

1. Quantum Entanglement Preparation:
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• A third party, traditionally referred to as Charlie, generates pairs of
entangled particles (qubits) in one of two Bell states (also known as
EPR pairs). The Bell states are:

|Φ+⟩ = (|00⟩+ |11⟩)/
√
2,

|Ψ+⟩ = (|01⟩+ |10⟩)/
√
2.

(32)

Charlie prepares a sequence of these Bell pairs.

• Charlie randomly measures each qubit in one of two bases: the stan-
dard basis (Z−basis) or the Hadamard basis (X−basis). The mea-
surement basis is represented by a random sequence of bits (0 or 1)
for each qubit.

• Charlie records the measurement outcomes and the basis choices for
each qubit.

2. Quantum Transmission: Charlie sends one qubit from each entangled
pair to Alice and the other qubit to Bob over the quantum communica-
tion channel. Charlie keeps the measurement outcomes and basis choices
secret.

3. Quantum Measurement by Alice and Bob:

• Upon receiving her qubits, Alice randomly chooses one of two mea-
surement bases (Z or X) for each qubit and performs measurements
accordingly. She records the measurement outcomes and the basis
choices but does not reveal them to Bob.

• Similarly, Bob randomly selects a measurement basis (Z or X) for
each of his qubits, performs measurements, and records the results
and basis choices.

4. Public Announcement of Measurement Bases: After the measure-
ments are completed, Alice and Bob publicly announce which measure-
ment bases they used for each qubit but do not reveal the measurement
outcomes themselves.

5. bf Error Estimation and Data Filtering:

• Alice and Bob compare their basis choices for each qubit. For match-
ing basis choices, they keep the measurement outcomes as a potential
part of their secure key.

• The mismatched basis choices are discarded, and the corresponding
measurement outcomes are not included in the key.

6. Privacy Amplification: To enhance security, Alice and Bob perform
privacy amplification on the remaining measurement outcomes, typically
using classical error-correcting codes and hashing functions, to obtain a
shorter, secure cryptographic key.
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The security of the E91 protocol relies on the properties of quantum en-
tanglement and the no-cloning theorem, making it resistant to eavesdropping
attempts. Any interference by an eavesdropper would disturb the entangled
qubits, leading to detection by Alice and Bob during the basis-matching step.
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