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Chapter 1

Bayesian probability theory &
classical causality

On this account all the sciences would only be unconscious applications of the
calculus of probabilities; to condemn this calculus would be to condemn science
entirely.
— H. Poincaré [1]

1.1 Probability space and probability distributions

As a mathematical theory, probability theory requires us to define three elements: the
sample space, the algebra of events, and a measure on this algebra.

The sample space is essentially a set Ω (for this school will always be considered finite),
from which we will draw the events. Events are simply subsets X ⊂ Ω, and will be
associated with measurement outcomes of experiments. In particular, a single measurement
outcome is a subset with a single element in the event space, x ∈ Ω.

The algebra of events is a collection X of the subsets of Ω relevant for the theory. In
particular, this collection needs to satisfy some properties:

1. ∅ ∈ X and Ω ∈ X . This means that the set of “no events” and the set of “all events”
are both relevant events and must be in the algebra;

2. Given X and X ′ both in X , the sets X ∪ X ′, X ∩ X ′, and X/X ′ are also in X .
This means that we can make logical combinations between events (respectively OR,
AND, and NOT). As a consequence,

⋃N
i=1Xi ∈ X , where N is the total number of

subsets in the algebra.

From now on, our events will be subsets X ∈ X . This way, we are ensuring that there
is a structure allowing us to make logical combinations of events without incurring any
abnormalities.
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Finally, a measure over this algebra is simply a map p : X → R such that X 7→ p(X) ∈
R. A probability distribution is a measure over an algebra of events satisfying the following
properties:

1. p(X) ≥ 0, ∀X ∈ X ;

2. p(Ω) = 1, which is called normalisation;

3. For any collection of disjoint events X1, ..., XN with Xi ∩Xj = ∅, ∀i ̸= j = 1, ..., N ,
then

p
(
∪N
i=1Xi

)
=

N∑
i=1

p(Xi). (1.1)

These properties, called Kolmogorov axioms, ensure many of the usual features of proba-
bilities we will be using along the subject. For instance, you can derive from these axioms
and basic set theory the following equation

p(X ∪X ′) = p(X) + p(X ′)− p(X ∩X ′), ∀X,X ′ ∈ X . (1.2)

Another relevant concept for this course is the one of conditional probability. It is
meant to capture the likelihood with which an event will occur given that another event
has occurred. It consists of a map p(·|X) : X → R, defined for all X ∈ X such that
p(X) > 0, and such that

X ′ 7→ p(X ′|X) :=
p(X ′ ∩X)

p(X)
. (1.3)

The demand that p(X) is nonzero is natural since we want to condition the event X ′

to something that has occurred. Conditional probabilities are important because it is
from them that we construct the notion of independence: two events X,X ′ are said to be
independent or uncorrelated when

p(X ′|X) = p(X ′), (1.4)

or from Eq. 1.3,
p(X ′ ∩X) = p(X ′)p(X). (1.5)

Also from Eq. 1.3, we can find that

p(X ′ ∩X) = p(X ′|X)p(X), (1.6)

where we just multiplied both sides of Eq. 1.3 by p(X). Therefore

p(X|X ′) =
p(X ∩X ′)

p(X ′)
(1.7)

=
p(X ′ ∩X)

p(X ′)
(1.8)

= p(X ′|X)
p(X)

p(X ′)
, (1.9)
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which is the so called Bayes’ rule. It simply states that one can invert the conditioning
between two variables by multiplying it by the ratio between the individual probabilities.

Example 1 – Tossing a coin

Consider the following sample space associated with the tossing of a single coin: Ω =
{H,T}, where H is a shortcut for the string “the outcome of the tossing is heads”, and
similar for T and tails. The algebra X of this sample space is given by

X = {{∅}, {H}, {T}, {H,T}}. (1.10)

Notice that it satisfies the properties of the algebra of events: it contains the empty set as
well as the whole sample space, and any logical combination of subsets is in the algebra.
To see that, notice for instance that

H ∪ T = {H,T} ∈ X ; H ∩ T = ∅ ∈ X ; H/T = {H} ∈ X . (1.11)

Feel free to try with any other combination of two subsets in X ! Consider now the proba-
bility measure p : X → R such that

p(H) = p(T ) =
1

2
. (1.12)

Notice that this measure satisfies the Kolmogorov axioms: it is non-negative and nor-
malised, so the probability of H ∪ T is just the sum of the individual probabilities.

Example 2 – Tossing two coins

Consider now the sample space associated with the tossing of two distinguishable coins, i.e.,
always two coin outcomes are produced. The possible outcomes will be Ω = {HH,HT, TH, TT},
where HH is the shortening for “the outcome of the tossing is heads for coin 1 and heads
for coin 2”, and similar for the other events.

The algebra of this set will contain all possible partitions of the set, such that

X = {{∅}, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH}, {HH,TT}, (1.13)

{HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH}, {HH,HT, TT},

{HH,TH, TT}, {HT, TH, TT}, {HH,HT, TH, TT}}.

Finally, the map

p(HH) = p(HT ) = p(TH) = p(TT ) =
1

4
(1.14)

forms a probability measure.
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1.2 Random variables and expectation values

Although the previous definition of the sample space Ω algebra of events X is sufficient
to construct probabilities and the most important rules to manipulate them, the events
X are still abstract concepts. They could be, for instance, sentences in English describing
how the outcome of a measurement is perceived in a lab. It is convenient instead to treat
events as numbers, which we are much more used to manipulating.

A random variable is a function A : Ω → R mapping each event x to a real number
a = A(x), such that it has a reasonably defined inverse map. This means that X = A−1(B)
is in the algebra of events for any upper bounded set B ∈ R. This demand ensures that
we can attribute probabilities to the random variables the same way as we attribute to the
events themselves, such that

p(A ∈ B) := p(A−1(B)). (1.15)

Usually, we will want to estimate expectation values of some random variable. This is
defined as

⟨A⟩ :=
∑

a∈Im(A)

a p(A = a), (1.16)

and this definition can be generalised for any function f : R → R over the numbers a. That
is,

⟨f(A)⟩ :=
∑

a∈Im(A)

f(a) p(A = a). (1.17)

In particular, expectation values of functions that are just of the form f(a) = am for some
m ∈ N∗ receive the special name of moments, and are relevant for the majority of statistical
analyses. This however goes a bit beyond the scope of this course and thus will not be
commented on.

Example 3 – Correlators

Consider again the case where a coin is tossed. Let us consider the map A : Ω → R such
that

A(H) = 1, A(T ) = −1. (1.18)

In this case, the expectation value of A is simply

⟨A⟩ = A(H)p(H) +A(T )p(T ) = p(H)− p(T ). (1.19)

In the case of two coin tosses, we can define a new map A′ as a function of A, such that

A′(HH) = A(H) ·A(H), A′(HT ) = A(H) ·A(T ), (1.20)

A′(TH) = A(T ) ·A(H), A′(TT ) = A(T ) ·A(T ). (1.21)
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The expectation value of A′ will thus be

⟨A′⟩ = A(H)A(H)p(HH) +A(H)A(T )[p(HT ) + p(TH)] +A(T )A(T )p(TT )(1.22)

= p(HH)− p(HT )− p(TH) + p(TT ). (1.23)

This quantity often receives the name of correlator, and can be ubiquitously found in the
literature of Bell nonlocality.

1.3 A short disclaimer

In this school, we take an operationalist approach to probabilities, attaching to them
some substantial meaning about experiments. In fact, probabilities in this school will not
represent “how many times this particular event happens among all possible events when
we repeat this same experiment to infinity”. Instead, we will interpret probabilities as the
degree of likelihood that a rational agent is willing to attribute to the occurrence of an
event.

Despite the bad impression that this called bayesian bias might give out, it is still as
realist as the frequentist one in the sense that infinite repetitions of an experiment are never
possible. Therefore, you can think of the frequentist interpretation as being subjective too,
since it is up to the experimenter to determine when a sufficient number of runs of the
experiment have been carried out. It is crucial to emphasize that everything discussed in
this school can also be easily imported into the frequentist interpretation. The subject will
however not dive deep into this topic, but students are free to search for literature on the
topic if they are interested.

1.4 Classical causality

We are now acquainted with bayesian probability theory, but how can we tell that a
correlation between random variables p(A1, ..., An) is classical? One way of doing so is by
assuming that there is an underlying classically causal model to the correlations.

Let’s begin by defining a notion of a classical causal model. These are described by a
collection of random variables and a collection of arrows between these representing when
one random has a direct causal influence on another. We can graphically denote these by
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directed acyclic graphs (DAGs), for example:

D
C

A

E

B (1.24)

where here the random variables are A, ..., E, and there are five arrows representing direct
causal influence.

The fact that this is a directed graph means that the connections are represented by
arrows, which captures the fact that, for example, A is the cause of E rather than vice
versa. The fact that it is acyclic means that we don’t get any causal loops. For example,
we don’t find a situation where A → B → C → A which would be paradoxical as it now
says that A is the cause of itself. We then want the sorts of correlations that we can have
between these random variables to always come from a causal connection.

Definition 1.4.1 (Reichenbach’s principle) A correlation between two random variables
satisfies Reichenbach’s principle if (i) there is a direct causal influence from one to the
other; (ii) there is some common cause that influences them both; or (iii) there may be
some common future that one has conditioned on which induces the correlation. In other
words, two correlated random variables A and C must be causally explained by one of the
following DAGs:

Chain Fork Collider

A

B

C

B

A C B

A
C

(1.25)

This implies that all correlations between the random variables A1, ..., An satisfying Re-
ichenbach’s principle will have the form

p(A1, ..., An) =

n∏
i=1

p(Ai|Pa(Ai)), (1.26)

where Pa(Ai) is the set of parent nodes of Ai, i.e., the set of all variables Aj ̸=i with an arrow
pointing towards Ai. Evidently, p(Ai|Aj) are all valid probability distributions, satisfying
all the necessary axioms.
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Now, the framework as we have developed it so far assumes that all of the nodes are, in
principle, observed. We may marginalise over one variable to find a particular distribution,
but we can also condition over all of them taking particular values. However, there will
be many experiments in which a particular variable is not observable. We denote these as
circular nodes, for example:

D

A

B

E

C

(1.27)

In this case, the correlations between the observed random variables A1, ..., An when there
are O1, ..., Om unobserved ones will have the form

p(A1, ..., AN ) =
∑

o1,...,om

n∏
i=1

p(Ai|Pa(Ai))
m∏
j=1

p(Oj = oj |Pa(Oj)), (1.28)

where all that is going on here is that we’re imagining that there is some underlying
description in which all nodes are observed and we’re just marginalising over those that
we have decided are unobserved. Despite these probabilities being unconditioned, we can
always apply Bayes’ rule (as long as the conditioners are nonzero).
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Chapter 2

Operational Probabilistic Theories

Without an interpretation probabilities are a purely mathematical concept and
thus, they cannot explain anything about nature. What makes this issue difficult
is that our understanding of probabilities is overloaded from everyday experi-
ence. For instance, we may say that it is very probable that it rains tomorrow
or that the probability that the universe came out the way it did is 0.0000034.
But what exactly do we mean by such statements on an operational level?
— D. Frauchiger [1]

2.1 Operational language & compositional rules

Before introducing the formalism of Operational Probabilistic Theories (OPTs), you
might be asking yourself what it means for a theory to be operational. Essentially, this
framework wants to drop off any assumptions about the underlying reality of an experiment
and focus exclusively on objective elements that are intrinsic to any experiment. An
experiment here is understood as a chain of actions that can be implemented in order to
investigate a physical system1, in particular, instructions on how to prepare the system to
be investigated, which questions can you make about it, and which answers you can get
for each question.

An operational language (OL) Θ is the formalisation of these concepts. It consists of a
tuple Θ := (Sys,Test,Out,Event). The elements S,A,B,C ∈ Sys(Θ) are labeling different
system types: you can think of them as coins, electrons, Hilbert or Euclidian spaces, etc.

Events T ,A ,B ∈ Event(Θ) connect system types A and B, and may have outcomes
x, a, b ∈ Out(Θ) associated to it. You can think of them as generalisations of transforma-
tions and measurements. A test TA→B

X is essentially a set of events from system-type A to
system-type B, with outcomes in the setX, i.e., TA→B

X = {T A→B
x }x∈X . Diagrammatically,

1Notice that in this framework, the existence of a physical system is assumed to be true. Anti-realist
interpretations are thus beyond the scope of the framework.
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the operational language is represented by boxes and wires, such that

T A→B
x 7→ Tx

A B
; TA→B

X 7→ TX
A B (2.1)

Notice that the diagrammatic representation is convenient because it allows us to detach
the subscripts A→ B from the labels of tests and events.

We will talk about the outcomes Out(Θ) in a moment, but they will demand special
treatment. Right now, let us see how we can combine Sys(Θ), Event(Θ), and Test(Θ) to
describe complex scenarios.

The first thing we might want to do is to perform tests in sequence over a system. This
is a natural request when you think of an optical table, for instance, in which you can put
several lenses in sequence on the same mode. Let us then define a sequential composition
◦:

◦ : Test(B → C)× Test(A→ B) → Test(A→ C) (2.2)

T
′B→C
Y × TA→B

X 7→ (T′ ◦ T)A→C
X×Y . (2.3)

Diagrammatically, this is telling that

TX T′
Y
CA B

≡ (T′ ◦ T)X×Y
CA
. (2.4)

We will also require some features from this product. For instance, it must be associative,
which means that

(T′ ◦ T)X×Y
CA

T′′
Z
D

= TX T′
Y
CA B

T′′
Z

D
= (T′′ ◦ T′)Y×Z

B D
TX

A
.

(2.5)
Also, for every system-type A, there should exist a trivial test IA→A, such that

TX I
BA B

= TXI
A BA

= TX
A B

. (2.6)

We are ignoring the outcome set of IA→A because it is possible to prove that it is the
singleton set ⋆, and moreover I is unique for each system-type in Sys(Θ). This invites us
to represent IA→A as simply the wire associated with system-type A.

Another way of composing elements of the operational language is to have things co-
exist. For instance, one could investigate a coin and a photon in the same experiment, or
Alice and Bob performing simultaneous measurements in their respective labs. Take into
consideration that pairs of systems, (A,B), must belong to Sys(Θ) as well as their indi-
vidual counterparts, so we say that AB ∈ Sys(Θ). We thus define a parallel composition
⊗:

⊗ : Test(A→ B)× Test(C → D) → Test(AC → BD) (2.7)

TA→B
X × T

′C→D
Y 7→ (T⊗ T′)AC→BD

X×Y . (2.8)
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In diagrams, we have

TX
BA

T′
Y

DC ≡ (T⊗ T′)X×Y
BDAC

. (2.9)

We will also demand associativity from this product,

(T⊗ T′)X×Y
BDAC

T′′
Z

FE =

TX
BA

T′
Y

DC

T′′
Z

FE
=

TX
BA

(T′ ⊗ T′′)Y×Z
DFCE , (2.10)

as well as the existence of a trivial system-type I, which represents not having a system
and can thus be added to or ignored in any diagram:

TX
BA

I
=

TX
BA

I

= TX
A B

, (2.11)

In particular, events of the form PI→A
x receive a special interpretation of preparation

events. You can understand it as a procedure describing picking a coin out of a bag
and tossing it, or a crystal emitting a photon in a particular state. Similarly, there are
procedures going from non-trivial system types to the trivial I, OA→I

y , which we are calling
observation events. We will represent such events as

PI→A
x 7→ Px

A
; OA→I

y 7→ Oy
A

. (2.12)

We finally require that for any tests TA→B
X , RB→C

Y , QD→E
Z , SE→F

W , we have

(RB→C
Y ⊗ SE→F

W ) ◦ (TA→B
X ⊗QD→E

Z ) = (RB→C
Y ◦ TA→B

X )⊗ (SE→F
W ◦QD→E

Z ), (2.13)

which looks very intricate algebraically, but when put into diagrams becomes very natural,

TX RY
CA B

QZ SW
FD E

⊗ ⊗◦

=

TX RY
CA B

QZ SW
FD E

⊗

◦

◦

, (2.14)

since if you just ignore all the dashed boxes it is immediate to see that the equality holds.
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2.2 Outcomes & probabilistic models

Outcomes Out(Θ) in the operational language represent the labels of the events in a
particular test. As abstract as it might sound, you can think of a test “checking which face
of a coin is upwards”. The possible events correspond to the coin being with heads up, or
tails up. Outcomes, therefore, are the labels H and T associated with each of these events.

Like systems and tests, there is a trivial outcome set ⋆ ∈ Out(Θ), representing the
singleton set ⋆ := {∗}. Any test containing ⋆ as the set of outcomes is therefore related to
a single event and is called a deterministic test. When this is the case, we will represent
them without the subscript, TA→B

⋆ ≡ TA→B. The trivial test IA→A, for instance, is an
example of a deterministic test.

Another possible way of accommodating outcomes is by representing them diagram-
matically as special system-types. In this convention, TA→B

X is represented by

TA→B
X 7→ T

A

B

X
. (2.15)

Notice that this convention is perfectly compatible with the properties demanded from
sequential and parallel compositions. We will mostly use the first notation introduced of
outcomes as subscripts, but the notation with outcomes as wires will be convenient later
when demonstrating some examples.

We also defined preparations and measurements as tests going from or to the trivial
system I. A test going from and to the trivial system, i.e., PI→I

X ∈ Test(Θ) is a special
element of the operational language and receives the name of scalar.

A probabilistic model consists of an operational language Π to which every scalar P I→I
X

is associated to a probability distribution {p(x)}x∈X , i.e., every scalar is a function over
the outcomes satisfying the Kolmogorov axioms introduced in the previous chapter. Most
generally, they will have the form

{p(x, y, z)}x∈X,y∈Y,z∈Z = PX OZ
TY

(2.16)

In fact, all these distributions are conditional to the tests PX , TY , and OZ being imple-
mented as per the provided diagram. This association of scalars to probability distributions
equips the operational language with all the features introduced in Chapter 1 and therefore
results such as Bayes’ rule can be rederived.
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2.3 Quotient theories

Consider now two events T A→B
x and T

′A→B
y ∈ Event(Π), which are not necessarily equal

or associated to the same outcome. However, it might be the case that

P O
Tx

A B

E
= P O

T ′
y

A B

E
, ∀P ∈ Event(I → AE), O ∈ Event(BE → I).

(2.17)
Whenever this happens, we say that TA→B

x is probabilistically equivalent to T
′A→B
y , and

represent it as TA→B
x ∼ T

′A→B
y . It is possible to prove that ∼ indeed constitutes an

equivalence relation.
We can then look not only to the set Event(Π) but to its partition Event(Π)/ ∼ in

which every element is a subset of events probabilistically equivalent to each other. Such
mapping is called quotienting. Notice that quotienting the events implies changes on the
tests as well since they are just sets of events. In particular, some of these quotiented
partitions receive special labels:

• The set Test(A → B)/ ∼ of tests from non-trivial to non-trivial system-types is
labeled as Instr(A→ B), the set of instruments;

• The set Event(A → B)/ ∼ from non-trivial to non-trivial system-types is labeled
Transf(A→ B), the set of transformations;

• The set Event(I → A)/ ∼ from the trivial to a non-trivial system-type is labeled
St(A), the set of states;

• The set Event(A → I)/ ∼ from a non-trivial to the trivial system-type is labeled
Eff(A), the set of effects.

A quotiented probabilistic model (Sys(Π), Instr(Π),Transf(Π), St(Π),Eff(Π),Out(Π)) in which
all scalars are combined through multiplication of real numbers constitutes an operational
probabilistic theory (OPT).

A very relevant feature of an OPT is that, since it assigns physical meaning to the
scalars only (in the sense that they are the only directly observable element in the theory),
every scalar boils down to a prepare-and-measure scenario, no matter how complex the
underlying diagram might originally be. It means that, for example,

P O
Tx

A B

E
≡ Tx ◦ P O

B

E
≡ P O ◦ Tx

A

E
. (2.18)

Conversely, prepare-and-measure scenarios are the only ones for which the OPT must
assign a definite probability distribution. It doesn’t mean that claims about probabilities

15



of tests or events occurring cannot exist in an OPT, however, they do not represent an
objective probability distribution, but merely a degree of belief of an agent about the
presence of a particular element in the closed diagram.

2.4 Linear structure

We finally have tools to establish a linear structure to the OPT. Although this can be
derived straightforwardly from the definition of OPTs and probability theory, we will just
provide the theorem and explore its implications.

Theorem 2.4.1 (Linear structure for OPTs) Let Θ be an OPT. Then Transf(A→ B)
can be embedded into a real vector space TransfR(A → B), such that the two operations +
(sum) and · (scalar multiplication) are well-defined and

• + is distributive over parallel and sequential composition;

• · is compatible with parallel and sequential composition.

What the theorem means is that, given a transformation T A→B
i , T

′B→C , one has

Ti
A B∑

i qi T ′B C◦ = Ti
A∑

i qi T ′B C
; (2.19)

Ti
A B∑

i qi

T ′B C
=

Ti
A B∑

i qi
T ′B C . (2.20)

In particular, scalars and summations can “float” in the diagram, i.e., they can be moved
in the diagram as one sees fit. They both have a clear interpretation with respect to the
underlying operational language as well: summing is a coarse-graining of the underlying
events so that the outcomes related to the summed-up events are being overlooked or
ignored by the agent reasoning about the particular experiment. Scalar multiplication on
its turn is a randomisation, in which the agent is just attributing to the particular diagram
a chance of occurrence equal to the scalar it is being multiplied by.

Since we are embedding Transf(A → B) into a real vector space, and ultimately any
transformation can be absorbed by a state and an effect, it is very natural to read states
and effects as vectors in this real vector space. In particular, states Px ∈ St(A) are mapped
to vectors |ρx) ∈ Rm, and effects Ay ∈ Eff(A) are mapped to vectors (ay| ∈ Rm∗ in the
dual of Rm. One can thus think of scalars as the inner product between states and effects2,

2This comes from a representation theorem attesting that one can map vectors in the dual space of
a vector space into the space itself, so the inner product is in fact taken between the states and the
representations of the effects in the same vector space.
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p(x, y|ρx, ay) = (ay|ρx). Notice that coarse-graining over all possible outcomes implies∑
y∈Y

(ay|ρx) =
∑
y∈Y

p(x, y|ρx, ay) = p(x|ρx, ay). (2.21)

But as argued previously, the OPT cannot say anything about an event in its underlying
diagrammatic explanation if there is no outcome associated with it. It is then natural to
demand that the function above does not depend on the choice of ay. This is called causal-
ity : demanding that the outcome statistics of a scalar test, when ignoring the outcomes of
the observation, does not depend on the choice of measurement. It is very important to
emphasize that not all OPTs will satisfy this property, and no OPT needs to satisfy this
to admit a linear structure.

Nonetheless, admitting such an assumption does yield convenient properties to the
OPT. For instance, it implies the existence of a unique unit effect (u| ∈ EffR(A) for every
system-type A, such that

(u|ρ) ≤ 1, ∀|ρ) ∈ StR(Π). (2.22)

It can be shown that the converse also holds: the existence of a unique unit effect for every
system-type in an OPT implies that this OPT satisfies the causality assumption. This unit
effect can be understood as taking the trace in standard quantum theory.

2.5 Examples

Classical bit

The classical bit consists of a subnormalised probability distribution {p(0), p(1)}. Let us
assume this distribution is normalised, and call p(0) = q. States can straightforwardly be
embedded into a 2-dimensional real vector space, such that any valid preparation has the
form

|ρ) =
(

q
1− q

)
. (2.23)

Effects in this case are all vectors (a| such that 0 ≤ (a|ρ) ≤ 1. We can represent them
as per Figure 2.1. The unit effect is therefore simply (u| = (1 , 1), and the transformations
are substochastic maps, taking states |ρ) ∈ St(R2) to St(R2).

Qubit

In quantum theory, the qubit is represented by a Hilbert space of dimension 2, with states
of the form

ρ =
1

2
(Tr{ρ}1+ ⟨X⟩σX + ⟨Y ⟩σY + ⟨Z⟩σZ), (2.24)

where 1 is the identity matrix, σX , σY and σZ are the Pauli operators and ⟨X⟩, ⟨Y ⟩ and
⟨Z⟩ are the expectation values of these operators.
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Figure 2.1: Real vector space representation for the sets of normalised states and effects
associated with a classical bit distribution.
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StR4(H2)

σY

σZ

σX

EffR4(H2)

Figure 2.2: Real vector space representation for the sets of normalised states and effects
associated with a quantum bit distribution.

Each density operator of a qubit already represents an equivalence class for prepa-
rations, since for instance the maximally mixed state will not distinguish whether the
preparation employed was a convex mixture of pure Z states or X states, despite these
being two different preparation procedures. All of these are represented by the same state,
ρ = 1

21.
We can then easily represent |ρ) as vectors in R4:

|ρ) =


Tr{ρ}
⟨X⟩
⟨Y ⟩
⟨Z⟩

 . (2.25)

The maximally mixed state, for instance, has the form

|ρ) = 1

2


1
0
0
0

 . (2.26)

The effects in the qubit are precisely the Bloch sphere again, so the dual of StR4(H2)
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is itself. Effects are thus simply given by

(a| = ( Tr{a} ⟨X⟩′ ⟨Y ⟩′ ⟨Z⟩′). (2.27)

The unit effect is given by (u| = (1 , 0 , 0 , 0). The standard graphical representation of
the Bloch sphere is a 3-dimensional projection of the 4-dimensional hypersphere formed by
the vectors |ρ) satisfying 0 ≤ (u|ρ) ≤ 1, and can be found in Figure 2.2. Transformations
in the qubit are all the maps T : StR4(H2) → StR4(H2) that take valid states into valid
states again, even when T is applied to one part of a bipartite system.
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Chapter 3

Spekkens’ Toy Theory

(...) Where can you find a place that will agree better with you and me? No
schools, no teachers, no books! In that blessed place there is no such thing as
study. Here, it is only on Saturdays that we have no school. In the Land of
Toys, every day, except Sunday, is a Saturday. Vacation begins on the first of
January and ends on the last day of December.(...)

— C. Collodi [1]

3.1 Ontic vs. epistemic – Spekkens’ toy theory

In classical theory, a system is usually described by a point in the phase space in which
each degree of freedom is associated with a canonical coordinate (for instance, the position
and momentum (x, p) of a single particle). The possible states for this system to be in are
given by the trajectory that satisfies the equations of motion, once the initial conditions are
specified. If one is not certain about the initial conditions but rather assigns probabilities
to each pair (x0, p0) of possible initial conditions in a region of the phase space, then the
possible states for the system are all the trajectories associated with each of these initial
conditions, weighted by the probability assigned to them.

This probability distribution of possible states in which your system might be in is what
is called epistemic state. The name comes from the ancient Greek epist´̄emē, knowledge,
so epistemic states represent states of knowledge about a system’s state. Naturally, if the
probability distribution in question is a Dirac delta1, then the agent is completely sure
about which is the initial state of the system and can conclude which trajectory of the
phase space the system will assume when it evolves with time. This state in which your
system truly is is called ontic state, from the Greek ón, being, existing. Ontic states are
therefore the fundamental states your system is occupying.

1A Dirac delta is a probability distribution that assigns nonzero probability to a single point and null
probability to all others.
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Figure 3.1: Ontic states in Spekkens’ toy theory.

When we talk about quantum theory, the most widespread belief is that pure states are
ontic, and mixed states are epistemic. This belief comes from the fact that as well as in
classical theory, the evolution of a pure state is completely specified by initial conditions.
Establishing a parallel with the previous chapter, an isolated qubit under the action of a
constant magnetic field will completely specify a trajectory on the surface of the Bloch
sphere, once the initial state |ψ0⟩ is given. Spekkens’ toy theory is an attempt to defend
the idea that all quantum states, both pure and mixed, are epistemic. In short, many of
the apparently weird features of quantum theory, such as interference and entanglement,
are totally mundane when quantum states are viewed as epistemic rather than ontic.

Consider a toy bit : a system with two degrees of freedom, (Q,P ), such that to each of
these physical quantities it can be assigned value 0 or 1. In this phase space, there will be
4 possible states for a system to be in: (0, 0), (0, 1), (1, 0), and (1, 1). In Figure 3.1, you
can see a representation of this phase space as a column. We also introduce the following
rule in our theory:

An agent can only be certain about the value of one degree of freedom per system,
being completely ignorant about the values of any other degree of freedom.

This principle is known as knowledge balance principle, epistemic restriction or principle
of classical complementarity, the last one being justified by its similarity with the quantum
complementarity principle that acts over canonical pairs. What this principle is imposing
is that an agent cannot know states of the form of Figure 3.1. Instead, when certain that
Q = 0, an agent should not be able to tell whether the system is in state (0, 0) or (0, 1),
and similarly for certainty about other values of Q or P . It means that the valid states
are the ones given in Figure 3.2. There is a natural mapping from these valid epistemic
states and pure quantum states of the qubit: the first two states represent the |0⟩ and
|1⟩ of the Bloch sphere; the third and fourth states represent |+⟩ and |−⟩; the fifth and
sixth represent |+i⟩ and |−i⟩. The last epistemic state is associated with a mixed state, in
particular the maximally mixed one, 1/2.

Transformations in the toy theory must map valid epistemic states to valid epistemic
states again, therefore no transformation can provide an agent with complete certainty
about the ontic state of the system. But more than that, we demand that transformations
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Figure 3.2: Valid epistemic states in Spekkens’ toy theory

operate on the ontic level, i.e., they change epistemic states by acting directly on the ontic
state. For instance, a transformation that swaps (0, 0) and (1, 1), while maintaining (0, 1)
and (1, 0) invariant, will map epistemic states to valid epistemic states, since

↔ ; ↔ , (3.1)

leaving the other epistemic states unchanged. This definition will be particularly relevant
when discussing the bipartite case later.

Valid measurements provide certainty about the value of a single degree of freedom,
and “mix up” any information about the other one. For instance, measuring the value
Q = 0 will just refresh any state of knowledge about the ontic state to the first epistemic
state of Fig. 3.2. Measurements, however, are usually not reversible. Notice also that if for
instance one measures Q = 0 on the state

, (3.2)

one might conclude that the ontic state of the system prior to the measurement must have
been (0, 1). After the measurement however this might be no longer the case, due to the
complementarity principle imposed over the epistemic states.

One can compose systems in the toy theory in the following manner: two systems
will be in ontic states (Q,P )A and (Q,P )B, respectively. The valid ontic states for the
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composite systems will be one out of the 16 entries of the following table

(0, 0)A
(0, 1)A

(1, 0)A

(1, 1)A

(0, 0)B(1, 0)B

(1, 1)B(0, 1)B

. (3.3)

The complementarity principle tells us that one cannot have complete knowledge about a
single system, which means that one cannot be certain about both QA and PA. However,
being certain about QA and PB for instance does not posit any violation of the principle,
yielding valid epistemic states. Some examples of valid epistemic states for two toy bits
are given in Figure 3.3.

It is easier to understand what states are not valid for the case of two toy bits. For
instance, the state

(3.4)

is not valid, since an agent would have maximal knowledge about the ontic state of system
B. Another more intricate example is given by

. (3.5)

The problem with this state is that if one agent performs a measurement and learns that
QA = 1 and QB = 0, which is allowed by the complementarity principle, the outcome of

Figure 3.3: Some examples of valid epistemic states for two toy bits in the toy theory. Any
permutations of rows and columns for these states are also valid in the theory.
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the measurement could be given by

, (3.6)

which is not allowed since again the agent would know both QB and PB. In fact, after some
leveraging of possible states by considering this aspect of the principle, one can conclude
that the only valid epistemic states are the ones in Figure 3.3 and permutations thereof.

3.2 “Quantum” features in the toy theory

There are plenty of features displayed in the toy theory that have an immediate analogy
with quantum behaviours. We briefly comment on some of them here.

Purity

Pure epistemic states are states of maximum knowledge. By the complementarity prin-
ciple, this means that they are the states in which an agent is certain about exactly one
outcome of the canonical pair for each system. By this definition, all but the last epistemic
state in Figures 3.2 and 3.3 are pure states, and they are the only pure states in the theory.

Convex combination

Like in quantum theory, it is possible to describe convex combinations of epistemic states
in a very straightforward manner: the convex combination of two epistemic states consists
of all possible ontic states inferred by both. For instance,

+cx = +cx = +cx = . (3.7)

Coherence

Coherence is the generalisation of the notion of superposition in quantum theory, i.e.,
the idea that two pure states can be combined into another pure state, as opposed to
the convex combination that will always result in a mixed state (a state of non-maximum
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knowledge). There are in fact four of such operations in the toy theory. For the states
corresponding to Q = 0 and Q = 1, for instance, they yield

+c1 = ; +c2 = ; (3.8)

+c3 = ; +c4 = . (3.9)

The same can be defined for other combinations of pure states. The parallel with quantum
theory comes by interpreting the above equalities as

1√
2
(|0⟩+ |1⟩) = |+⟩ ; 1√

2
(|0⟩ − |1⟩) = |−⟩ ; (3.10)

1√
2
(|0⟩+ i |1⟩) = |+i⟩ ; 1√

2
(|0⟩ − i |1⟩) = |−i⟩ , (3.11)

and so on for other pure states.

Non-orthogonality

We can say that two epistemic states are nonorthogonal if they share at least one ontic
state among the possible ones in the state of knowledge they represent. For instance, the
states

; ; ; , (3.12)

are all non-orthogonal, since all infer the state (0, 0) as a possible ontic state. On the other
hand, the states

; (3.13)

are said to be orthogonal, since the set of possible ontic states for both is disjoint. In
classical theory, all pure states are orthogonal to each other, which does not hold in the
toy theory.
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Entanglement

The states

; ; ; (3.14)

and their permutations of rows and columns are all valid and pure epistemic states in the
theory. However, nothing is particularly known about the individual outcomes Q or P
of each toy bit. Instead, the maximum knowledge is on how these quantities are related
between the bits, such that once you find out the value of QA, for instance, you should be
able to infer either QB or PB with certainty. The first state, for example, tells that the
ontic state of the bit A is always the same as the ontic state of the bit B, but it does not
tell which ontic state is it. The others follow a similar reasoning.

Pure states for composite systems that tell nothing about the individual systems are
called entangled states in quantum theory. In classical theories, having some maximal
knowledge about a composite system always implies maximal knowledge about the indi-
vidual systems as well, but the complementarity principle imposes a trade-off between local
and global knowledge.

Geometrical structure

As introduced in the previous chapter, the toy theory can also be accommodated in the
framework of OPTs and therefore embedded into a real vector space. Unlike both classical
and quantum theory, its state of spaces StR(ToyBit) is given by the one in Figure 3.4.

StR(ToyBit)

Figure 3.4: Set of states of the real vector space representation of the toy bit OPT.

27



3.3 The toy theory in ZX language

A very interesting feature of the toy theory is that it can easily be imported into the
framework of ZX calculus. For this purpose, we merely need to associate some of its
components with the graphical components of ZX. The first of such components will be
the cloning spider:

, (3.15)

such that it maps ontic states to epistemic states in the following manner:

7→ ; 7→

7→ ; 7→

(3.16)

Furthermore, we will establish the following convention: spiders with no input and one
output will be always labeled with a phase 00, 01, 10, or 11, and will represent the following
epistemic states:

00 := ; 01 := ; 10 := ; 11 := .

(3.17)
Finally, we introduce a Hadamard transformation

, (3.18)

that will map ontic states to ontic states of single toy bits such that (0, 1) ↔ (1, 0), while
the other ontic states remain unaltered. We also establish that any spider with Hadamards
applied to all its legs is written as a red spider, i.e.,

ab
...

... = ...
... ab , (3.19)

where a spider with multiple legs is just a concatenation of nested copying spiders and
their respective adjoint spiders.
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With only these tools, we can see how all properties of ZX calculus follow naturally.
For instance, the spider rule will be such that

ab ...
...

cd
...

...

= ef ...
... , ef = (a⊕ c)(b⊕ d), (3.20)

where ⊕ is the sum module 2. Finally, all bialgebra properties of ZX calculus hold for
phase 00:

00 = ; 0000 =
00

00
;

00

00

00

00
= 00 00 ;

(3.21)
Finally, it is possible to demonstrate that the toy theory calculus is complete by em-

ploying the same completeness proofs as for standard ZX. This is a much more convenient
result: now we can leverage any knowledge about ZX calculus to demonstrate things with
the toy theory!

3.4 Example: the Peres-Mermin proof of non-classicality

The Peres-Mermin square is a classic proof of non-classicality of quantum theory. It consists
of a table of measurements over a two-qubit state, with the form

1⊗ σZ σZ ⊗ 1 σZ ⊗ σZ
σX ⊗ 1 1⊗ σX σX ⊗ σX

−σX ⊗ σZ −σZ ⊗ σX σY ⊗ σY

. (3.22)

Each row of this matrix multiplies to 1⊗1, except for the last row that results in −1⊗1.
Then, we assume that each of these observables has a definite outcome ±1 assigned to it,
without giving attention to how these measurements will be implemented. This assumption
is incompatible with quantum theory since it is simply impossible to replace the entries of
the square by ±1 in such a way that the quantum constraints are satisfied!

The Peres-Mermin square is considered a proof of contextuality, a signature of non-
classicality that will be explored in the next chapter. Interestingly enough, Spekkens’
toy theory cannot prove non-classicality in this case. That is because, by replacing the
quantum measurements with the corresponding toy measurements, i.e.,

− −
, (3.23)
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where each node has phase 01. It is possible to check that every row and column of this
square when concatenated sequentially, will yield merely two identities paired up, the last
row inclusive. This means that all entries of the square can be assigned values ±1 with no
contradiction.
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Chapter 4

Signatures of Non-Classicality

To suppose two things indiscernible, is to suppose the same thing under two
names. And therefore to suppose that the universe could have had at first an-
other position of time and place, than that which it actually had; and yet that all
the parts of the universe should have had the same situation among themselves,
as that which they actually had; such a supposition, I say, is an impossible fic-
tion.

— G. W. F. von Leibniz [1]

4.1 Bell theorem & quantum violations

Last chapter, we learned that many quantum features are displayed by Spekkens’ toy
theory, a classical theory with an epistemic restriction. The last section introduced the
Peres-Mermin square, an example of something that quantum theory predicts but the toy
theory does not. This raises the question of what is truly non-classical in quantum theory,
or put in other words, what does quantum theory can explain, but the toy theory cannot?

Bell nonlocality consists of a particular feature of operational theories that can accom-
modate a space-time structure. Consider the following Bell experiment: two agents, the
ubiquitous Alice and Bob, are placed in separate laboratories. Each of them receives a
system produced by the same source, chooses a measurement to perform over their share
of the system, and registers the outcome observed. It is common to label X,Y the sets
of labels for the measurement choices of Alice and Bob, respectively, and A,B the labels
for the measurement outcomes. Without loss of generality, we will consider that every
measurement choice has the same set of outcome labels, i.e., every measurement in X has
the same set of outcomes A, and the same for Bob. The setup of a Bell experiment is
represented in Figure 4.1-a.

Finally, we assume that the laboratories are space-like separated. What it means is that
their light cones have no intersections during the whole Bell experiment, from the moment
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Figure 4.1: (a) OPT representation of a Bell experiment; (b) space-time diagram represent-
ing Alice and Bob’s laboratories when the experiment happens. Notice that the diagonal
lines, representing the trajectory of light, intersect only before or after the experiment is
concluded.

they choose what measurements to perform and receive their halves of the system until
they have performed the measurements and registered the outcomes. This is illustrated in
Figure 4.1-b.

This operational setup produces a conditional probability distribution

PAB|XY := {p(ab|xy)}a∈A,b∈B,x∈X,y∈Y. (4.1)

Furthermore, the constraint that they are space-like separated (which we will call no-
signaling condition) implies that coarse-graining over the outcomes of a party implies ig-
noring also the measurement choice this party has made, i.e.,∑

a∈A
p(ab|xy) = p(b|y), ∀b ∈ B, x ∈ X, y ∈ Y; (4.2)

∑
b∈B

p(ab|xy) = p(a|x), ∀a ∈ A, x ∈ X, y ∈ Y. (4.3)

This is similar to the causality condition defined for an OPT.
Now consider a causal structure given by the following graph

X Y

A B

Λ , (4.4)

where the square nodes represent observed random variables, and the circular node rep-
resents an unobserved or ignored variable. If we demand that the correlations in a Bell
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experiment are explained by this graph, in which all nodes are classical random variables,
then they must necessarily have the form

p(ab|xy) =
∑
λ∈Λ

p(λ)p(a|xλ)p(b|yλ), ∀a ∈ A, b ∈ B, x ∈ X, y ∈ Y. (4.5)

Bell’s theorem demonstrates that there are operational theories, in particular quantum
theory, satisfying the no-signaling condition and that yet cannot be explained by the above
classical, causal structure (which is often called locally causal). It is easier to understand
this result by looking at a particular case, where X = Y = A = B = {0, 1}. Mathematically,
each experiment with fixed measurements x, y ∈ {0, 1} is exactly the same as the example
of tossing two coins simultaneously, provided in Chapter 1, where we assign values 0 to H
and 1 to T . We can then compute the correlators

Exy = p(00|xy)− p(01|xy)− p(10|xy) + p(11|xy), ∀x, y ∈ {0, 1}. (4.6)

If the probabilities p(ab|xy) satisfy local causality, then there is Λ such that they have
the form of Equation 4.5 and the correlators can be rewritten as

Exy =
1∑

a,b=0

(−1)a+bp(ab|xy) (4.7)

=
1∑

a,b=0

(−1)a+b
∑
λ∈Λ

p(λ)p(a|xλ)p(b|yλ) (4.8)

=
∑
λ∈Λ

p(λ)

(
1∑

a=0

(−1)ap(a|xλ)

)(
1∑

b=0

(−1)bp(b|yλ)

)
(4.9)

=
∑
λ∈Λ

p(λ)Ex(λ)Ey(λ), (4.10)

where Ex(λ) and Ey(λ) are simply the expectation values of the individual coin tosses,
parametrised by the choice of λ and x, y.

Consider now the Clauser-Horne-Shimony-Holt (CHSH) functional for this particular
scenario

ICHSH(PAB|XY) = E00 + E01 + E10 − E11. (4.11)

If each correlator factorises, it is possible to demonstrate that

|E00 + E01 + E10 − E11| ≤ 2, (4.12)

which is the famous CHSH inequality.
Consider now the experiment in which Alice and Bob, each in their separate lab, receive

a qubit. This pair of qubits was prepared in the state

|Φ⟩ = 1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B). (4.13)
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If Alice chooses x = 0, it means that she is going to perform measurement Z on her qubit,
registering a = 0 if she gets outcome 0 and a = 1 otherwise. If she chooses x = 1, then
she performs measurement X over the qubit registering outcomes in a similar way. Bob
measures 1√

2
(X + Z) when he chooses y = 0, and 1√

2
(X − Z) when y = 1, registering

outcomes like Alice.

By computing the correlators Exy = ⟨Φ|Ax ⊗By|Φ⟩, one can get to the value

|E00 + E01 + E10 − E11| = 2
√
2 > 2. (4.14)

Because assuming that the correlations satisfy local causality implies inequality 4.12,
violating the inequality implies that the correlations do not admit of a locally causal ex-
planation. Quantum theory is therefore deemed as non-local in the sense of Bell.

4.2 Non-signalling correlations and postquantum violations

The violation obtained in the previous example is in fact the best violation one can get
with quantum theory for the CHSH inequality. However, if one considers all possible cor-
relations PAB|XY satisfying the no-signaling condition for the Bell scenario we investigated,
one can conclude that

|E00 + E01 + E10 − E11| ≤
1∑

x,y=0

|Exy| (4.15)

≤ 4. (4.16)

This means that the optimal quantum violation, which we will refer to as the Tsirelson
bound, is not tight: other probabilistic models out there are compatible with relativis-
tic assumptions, and yet cannot be explained by quantum theory. This is illustrated in
Figure 4.2.

Exploring these postquantum theories is more than a creative exercise. It has proven
to be an invaluable tool for exploring what features of quantum theory are inherently
quantum, in the sense that they cannot be explained by classical theory while at the same
time ruling out other possible posquantum theories.

4.3 Generalised contextuality

A more general notion of non-classicality that is not present in the toy model is gener-
alised contextuality, or simply contextuality from now on. Differently from Bell nonlocality,
assessments of contextuality do not demand a space-time structure and thus can be present
in many more operational theories. The object of study of contextuality is often a prepare-
and-measure scenario, something that was briefly discussed in Chapter 2. Because any
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Figure 4.2: Representation of classical (normal line), Tsirelson (dashed line), and non-
signaling (doubled line) bounds for the 2-measurements-2-outcomes Bell scenario. Quan-
tum correlations (thick circle) never violate the Tsirelson bound, but other non-signaling
correlations can.

operational scenario yielding probabilities can be reduced to a prepare-and-measure sce-
nario, contextuality can also be assessed in a vast range of experiments.

To study prepare-and-measure scenarios, one must only know the preparations, obser-
vations, outcomes, and statistics in the operational language. We will call P the set of
preparations, M the set of measurements, K the set of outcomes, and p the shortcut for
{p(k|M,P )}k∈K,M∈M,P∈P the set of correlations derived from this scenario. As before, we
can then represent the operational scenario by the tuple (P,M,K, p).

As introduced in chapter 2, we want to quotient this operational language, so that
any information that cannot be captured by preparing and measuring is ignored. We
will keep using the symbol ∼ to tell that two preparations or measurement outcomes are
operationally equivalent.

As in the Bell scenario, we want to supplement this operational scenario with some
information about the causal structure of the experiment, a guess of what is happening to
the system in the process of preparing and measuring it. We will call this extra information
an ontological model. In the spirit of the toy theory, an ontological model will be composed
of a space Λ containing all possible ontic states λ for the system. Each preparation will
induce a state of knowledge about the system, i.e., an epistemic state {µ(λ|P )}P∈P,λ∈Λ,
and each measurement is associated to a response function mapping ontic states to prob-
abilities associated to each outcome, {ξ(k|M,λ)}k∈K,M∈M,λ∈Λ. Finally, we want that this
ontological model explains all statistics in the operational scenario,

p(k|M,P ) =

∫
λ∈Λ

ξ(k|M,λ)µ(λ|P )dλ, ∀k ∈ K,M ∈ M, P ∈ P. (4.17)

However, if there is information about preparations and measurement outcomes that
cannot be captured by our experiment, there is no reason to include them in the ontological
model. This is motivated by Leibniz’s quotation at the beginning of this chapter: if two
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elements of a theory are indistinguishable, an explanation for that theory that needs to
distinguish them is not the best explanation possible. What this means for our ontological
model is that whenever two preparation procedures P, P ′ are equivalent, the epistemic
states induced by them should be equal, and similar for measurement outcomes. This
assumption is what we call noncontextuality :

P ∼ P ′ ⇒ µ(λ|P ) = µ(λ|P ′), ∀λ ∈ Λ, P, P ′ ∈ P; (4.18)

[k|M ] ∼ [k′|M ′] ⇒ ξ(k|M,λ) = ξ(k′|M ′, λ), ∀λ ∈ Λ k, k′ ∈ K, M,M ′ ∈ M. (4.19)

It is the incompatibility with such an assumption that constitutes proof of contextuality.
A theory is, therefore, contextual whenever it contains a prepare-and-measure scenario
incompatible with the assumption of noncontextuality.

The reason why the toy model does not exhibit contextuality is that it is a noncontextual
ontological model itself. It satisfies the principle of noncontextuality by construction, for
instance, when the convex combination is defined by mapping three different combinations
of epistemic states to the same maximally mixed state.

In fact, the geometric representation of states and effects in theories such as the toy
model or the classical bit always ends up in simplices, i.e., generalisations of a triangle
in multiple dimensions. Therefore, simplicial theories are often called strictly classical.
In this sense, it has been shown that assessing contextuality for an operational theory is
equivalent to assessing whether its geometric representation in the real vector space admits
of a simplex embedding, i.e., a linear mapping from its states and effects into states and
effects of a simplicial theory.

Formalising this concept, let Θ = (StRm ,EffRm ,Sys) be the geometric representation of
a quotiented operational theory in a real vector space. We say that Θ admits of a simplex
embedding if there exists ∆d a simplex in a (not necessarily the same) real vector space
Rn, and linear maps ι, κ : Rm → Rn such that

• ι(StRm) ⊆ ∆d;

• κ(EffRm) ⊆ ∆∗
d;

• The inner products are preserved by ι and κ.

This means that the quotiented operational theory Θ is a subtheory of the simplicial
one, and therefore its statistics can be simulated by a strictly classical theory. This shows
the strength of contextuality as a notion of non-classicality: every scenario that admits
of a noncontextual ontological model is classically explainable in the sense that the whole
setup can be simulated by a strictly classical quotiented theory. Quantum theory is not
such a theory: the sets of states and effects of a qubit, and even small subsets of it, do not
admit of a simplex embedding.
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To prove it, consider the following six preparations:

σ0 =

(
1 0
0 0

)
; σ1 =

(
0 0
0 1

)
; σ2 =

1

4

(
1

√
3√

3 3

)
; (4.20)

σ3 =
1

4

(
3 −

√
3

−
√
3 1

)
; σ4 =

1

4

(
1 −

√
3

−
√
3 3

)
; σ5 =

1

4

(
3

√
3√

3 1

)
, (4.21)

with measurement outcomes being represented by the same matrices. Among the statistics
for this experiment, we have that

p(1|0) = p(0|1) = Tr

{(
1 0
0 0

)(
0 0
0 1

)}
= 0; (4.22)

p(3|2) = p(2|3) = Tr

{
1

4

(
1

√
3√

3 3

)
1

4

(
3 −

√
3

−
√
3 1

)}
= 0; (4.23)

p(5|4) = p(4|5) = Tr

{
1

4

(
1 −

√
3

−
√
3 3

)
1

4

(
3

√
3√

3 1

)}
= 0, (4.24)

and also that

1

2
1 =

1

2
(σ0 + σ1) (4.25)

=
1

2
(σ2 + σ3) (4.26)

=
1

2
(σ4 + σ5) (4.27)

=
1

3
(σ0 + σ2 + σ4) (4.28)

=
1

3
(σ1 + σ3 + σ5), (4.29)

and the same for the respective measurement outcomes.

Equations 4.25 will impose constraints on how the µ(λ|P ) from the ontological model
relate to each other, as well as the ξ(k|λ). The statistics will impose constraints on how
the epistemic states and response functions relate to each other, resulting in a long but
simple system of equations that will only admit the trivial solution: all µ(λ|P ) and ξ(k|λ)
must be null for all values of λ, which means that there is no ontological model compatible
with this scenario.
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Chapter 5

Resource Theories

The guiding philosophy in the pragmatic tradition is that understanding a phe-
nomenon means being able to make use of it. Physical phenomena are studied
in order to better leverage certain resources.

—B. Coecke, T. Fritz, R. W. Spekkens [1]

5.1 Mathematical framework for resource theories

The concept of resource is borrowed from the economical concept of scarcity. A certain
state of things is more or less valuable according to the easiness with which it can be
extracted, obtained, or implemented. It is convenient thus to consider a theory that can
keep track of how valuable a given state or experimental protocol is under certain physical
restrictions. Structurally, a resource theory is a commutative ordered monoid. This can be
defined as follows:

Definition 5.1.1 (Commutative ordered monoids) Let A be a set of resources equipped
with a binary operation + (representing the situation in which one holds two resources
simultaneously), a distinguish element e (a free resource), called identity, and an ordering
relation ≥ (telling how valuable a resource is compared to another). Then A is said to be
a commutative ordered monoid if, for any a, a′, a′′ ∈ A, we have

• if a ≥ a′ and a′ ≥ a′′, then a ≥ a′′;

• if a ≥ a′ and a′ ≥ a, then a = a′;

• a+ (a′ + a′′) = (a+ a′) + a′′ and a+ a′ = a′ + a;

• a+ e = a;

• if a ≥ a′, then a+ a′′ ≥ a′ + a′′.
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In physical terms, one should read the symbol ≥ as “is convertible to”. Whenever
ρ ≥ σ, it means that, in the set of operations and descriptions allowed by the restriction
imposed over the experimental scenario, there will be ways of transforming ρ into σ. If,
otherwise, ρ ̸≥ σ, it must be read as “ρ is not convertible to σ”, meaning that there is
no way of performing this transformation with the knowledge one has access to in the
experimental scenario. Notice that not all resource theories need to satisfy the second
property, i.e., there can be resource theories in which (a ≥ b) ∧ (b ≥ a) ≠⇒ a = b. We
call such structures preordered monoids, and they represent situations in which resources
can be converted into one another albeit being different.

It is thus convenient to define a resource theory in terms of free operations and free
states:

Definition 5.1.2 (Resource theory) Let (Sys(Θ),St(Θ),Transf(Θ),Eff(Θ),Out(Θ)) be a
quotiented operational theory. Let F ⊆ St(Θ) be a subset of states that are not resourceful,
and O(A → B) ⊆ Transf(A → B), for all A,B ∈ Sys(Θ) be a subset of transformations
that cannot create resources. Then, the tuple R = (F ,O) is a resource theory if

• I ∈ O(A), ∀A ∈ Sys(Θ), where I is the trivial transformation;

• T ∈ O(A→ B) and T′ ∈ O(B → C) =⇒ T′ ◦ T ∈ O(A→ C), ∀A,B,C ∈ Sys(Θ).

The set F is called the set of free states, while the set O is called the set of free
operations. The demands for constructing a resource theory are perfectly reasonable: to
do nothing is always a free operation, and a sequence of free operations must be free as well.
A corollary of this definition is often highlighted due to its interpretational convenience:

Definition 5.1.3 (Golden rule of resource theories) Let R = (F ,O) be a resource theory
for the operational theory Θ. If T ∈ O(A→ B) and ρ ∈ F(A), then T ◦ ρ ∈ F(B).

The interpretation is as simple as it seems: performing a free operation over a free state
will necessarily lead to a free state. In other words, free operations cannot convert free
states into resource states.

Resource theories are always constructed operationally, taking into account what are
the central phenomena to be studied to define the set of free operations or of free states
(usually, one starts by defining just one of the sets, and the other is obtained from the
Golden Rule). The quantum resource theory of entanglement, for example, starts from
the assumption that for bipartite scenarios, operations performed locally over each of the
parties and classical communication between them are always allowed. The set of free
states, as a consequence, is restricted to separable states.

One of the most useful features of a resource theory is the possibility of identifying
monotones associated with the resource property. Monotones are functions capable of wit-
nessing or quantifying the convertibility between states and are mathematically described
as homomorphisms between the resource theory A and R≥0, where R≥0 is the set of non-
negative real numbers.
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Definition 5.1.4 (Homomorphism) Let A and A′ be commutative ordered monoids. An
ordered map f : A → A′ is an homomorphism if, for every a, a′ ∈ A, we have

• a ≥ a′ ⇒ f(a) ≥ f(a′);

• f(a+ a′) = f(a) + f(a′);

• f(0) = 0.

Since R≥0 is also a commutative ordered monoid with respect to addition, we want to
search for a functional f capable of quantifying the convertibility between elements of A
with real numbers.

Catalytic convertibility is a common concept in many resource theories and is borrowed
from the concept of catalysis in Chemistry. Mathematically, a resource theory equipped
with catalytic convertibility can be defined by a non-cancelative commutative ordered
monoid.

Definition 5.1.5 (Non-cancelative commutative ordered monoid) Let x, y, z ∈ A be ele-
ments of a commutative ordered monoid. A is said to be non-cancelative if

x+ z ≥ y + z ≠⇒ x ≥ y. (5.1)

In resource-theoretic terms, it means that x is not convertible in y by itself, but in
the presence of z, this process is allowed. The following example, due to Fritz, illus-
trates the idea: the conversion of wood+nails to table is not allowed, but the conversion
wood+nails+hammer to table+hammer is possible. The state z is called the catalyst of this
conversion. A resource theory that is non-cancellative can be turned into a cancellative
one by redefining its ordering relation, such that for any x, y, z ∈ A,

x+ z ≥ y + z =⇒ x ⪰ y. (5.2)

This relation can be read as “x is catalytic convertible into y”, and a resource theory which
is cancellative becomes an abelian ordered group1. Resource theories of this type are the
ones that allow for borrowing resources, since the concept of a debt resource −x is included
in an abelian ordered group.

5.2 Example: Local Operations and Shared Randomness
(LOSR)

We are interested in constructing a resource theory to quantify the non-classicality of
common-cause scenarios. Common-cause scenarios consist of two parties, Alice and Bob,

1i.e., a commutative ordered monoid that has, for every a ∈ A, an element a−1 ∈ A such that aa−1 =
a−1a = e.
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sitting in separate labs, who have no direct way to influence one another. They might,
however, have some systems in their lab which could have been interacting with one another
at some point in the past when Alice and Bob met up with one another. It is these systems
that are the common cause that can lead, for example, to correlations between what they
observe in their labs. With this in mind, given that we are trying to understand non-
classicality, it is natural to divide the things that Alice and Bob can do into free and
nonfree by saying that the transformations they can do freely are those that rely only on
a classical common cause — that is, some shared randomness — and the things that they
can do non-freely are those that rely on a quantum common cause — that is, some shared
entangled state.

Consider the specific example of a resource state: a bipartite quantum state rho shared
by Alice and Bob

σ

HA HB

. (5.3)

In this chapter, we will read diagrams from bottom to top for a change. Single wires will
always represent classical systems, i.e., sets of random variables A,X, etc, while double
wires will represent quantum systems (Hilbert spaces).

In this resource theory, we demand that they can freely convert σ into any other bipar-
tite state ρ by performing local operations, i.e., complete-positive trace-preserving (CPTP)
maps EA, EB on their shares of the system, and by sharing some source of classical ran-
domness {p(i)}i∈I . These processes take the form

p

EA EB

HA HB

H′
A H′

B

. (5.4)

It is easy to show that these operations will satisfy the transitivity and reflexibility of
the order relation ≥, i.e., (ρ ≥ σ) ∧ (σ ≥ χ) =⇒ ρ ≥ ξ and ρ ≥ ρ. For the first one,
it suffices to show that sequentially composing two of the above processes is again a free
operation. The fact that the trivial process 1 ⊗ 1 belongs to the set of free operations
proves the second property.

In particular, the type of states that can be created freely are separable states. That
is because if you take maps EA : ⋆ → HA and EB : ⋆ → HB, these are simply preparation
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procedures of quantum states, and

p

EA EB
HA HB

(5.5)

has the form of a free operation. Also, discarding is always a free operation. These two
facts put together mean that any resource can be converted to a separable state, since one
can always freely discard whatever resource is available and then freely create a separable
state.

Notice however that this is one particular example of a resource. We can think of more
general cases, such as bipartite stochastic maps. In our resource theory, we might want to
say that they are free when they admit of a quantum common-cause explanation, in the
spirit of a quantum Bell scenario, i.e.,

S

A B

X Y

=

ρ

MA MB

X Y

A B

. (5.6)

We can then ask ourselves what it means to perform local operations and have shared
randomness in this scenario. These will be local stochastic maps acting on the inputs X
and Y and outputs A and B, such that

ρ

MA MB

X Y

A B
SA

TA

SB

TB

p

A′ B′

X′ Y′

. (5.7)

It turns out that for this set of free operations, free resources are the classical-common
cause Bell scenarios, i.e.,

MA MB

p
X Y

A B

. (5.8)
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So by changing the notion of what is a free resource, we can use LOSR operations to
quantify when something does not admit of a Bell classical common-cause explanation!
In fact, this framework can be applied to virtually any process with classical, quantum,
or even more general inputs/outputs. Take for instance the case with quantum Einstein-
Podolsky-Rosen scenarios. They consist of a common cause for both Alice and Bob, with
the difference that now Bob always receives a quantum system and never performs any
measurement over it. The relevant objects in this scenario are called assemblages: sets of
subnormalised quantum states labeled by Alices inputs and outputs,

ΣA|X := {σa|x}a∈A,x∈X. (5.9)

If we consider the resources to be quantumly realisable assemblages, i.e., each element of
the assemblage has the form

MA

ρ
X

A HB

E
, (5.10)

then the LOSR operations will have the form

ρ

MA E
X

A HB

SA

TA

E′

p

A′ H′
B

X′

, (5.11)

i.e., some local operations on the inputs and outputs of Alice and quantum channels on
Bob’s state, all conditioned to a shared probability distribution. It is possible to verify
that the free resources, in this case, are the classical common-cause assemblages, i.e.,

MA

p
X

A HB

E
. (5.12)

We see therefore how this type-independent resource theory of LOSR allows us to
quantify a myriad of interesting non-classicality scenarios without having to build a whole
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resource theory from scratch. One only needs to specify what processes in the theory are the
resourceful ones, have a well-established notion of local operations and shared randomness
for them, and identify when are the resources freely achievable. This framework can explore
other common-cause scenarios beyond quantum theory — one just has to add postquantum
system types and specify how LOSR processes will look for the sorts of scenarios under
investigation.
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