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Chapter 1

Postulates of Quantum

Mechanics

1.1 Postulates

1. The state of a quantum system at time t is represented by a normalized

vector ∣ψ(t)⟩ belonging to some Hilbert space.

2. A physical observable is represented by a linear, hermitian operator Ô.

3. The only possible result of a measurement of an observable is one of the

eigenstates oi of the corresponding operator Ô.

4. The probability for measuring the value oj is Poj = ∣⟨oj ∣ψ(t)⟩ ∣
2
, where ∣oj⟩

is the normalized eigenvector of Ô corresponding to the eigenvalue oj .

5. After a measurement of Ô that yields the result oj , the quantum system

is in a new state that is the normalized projection of the original state

vector onto the vector corresponding to the result of the measurement:

∣ψ′⟩ = P̂j ∣ψ⟩√
⟨ψ∣ P̂j ∣ψ⟩

, (1.1)

where P̂j = ∣oj⟩ ⟨oj ∣ is the projection operator onto the eigenket ∣oj⟩ corre-

sponding to the eigenvalue oj .

6. The time evolution of a state is given by the Schrödinger equation

i~
d

dt
∣ψ(t)⟩ = Ĥ(t) ∣ψ(t)⟩ , (1.2)
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where the Hamiltonian operator Ĥ represents the energy observable of the

system.

1.2 Stern-Gerlach experiment

The experiment was first carried out by O. Stern and W. Gerlach in 1922.

Fig. 1.1 shows a schematic diagram of the apparatus. A collimated beam of silver

atoms is produced by evaporating silver in a hot oven and selecting those atoms

that pass through a series of narrow slits. The beam is then directed between the

poles of a magnet producing an inhomogeneous magnetic field. When a neutral

atom with a magnetic moment µ⃗ enters the magnetic field B⃗, it experiences a

force

F⃗ = ∇(µ⃗ ⋅ B⃗). (1.3)

For particles like electron, the magnetic moment is proportional to intrinsic

angular momentum (called spin): µ⃗ ∝ S⃗. If we call the direction in which the

inhomogeneous magnetic field is large the z direction, we see that

Fz = µz
∂Bz
∂z

∝ Sz
∂Bz
∂z

. (1.4)

Classically, Sz = ∣S⃗∣ cos θ, where θ is the angle that the magnetic moment makes

with the z axis. Thus Sz should take on a continuum of values ranging from −∣S⃗∣
to +∣S⃗∣, so we should find a corresponding continuum of deflections. Surprisingly,

Stern and Gerlach observed only two deflections. In fact, they measured the

component of the intrinsic angular momentum of an electron along the z axis

and found it to take only two discrete values, ~
2

and −~
2
, commonly called ”spin

up” and ”spin down” respectively. Numerically, ~ = h
2π

= 6.582 × 10−16eV ⋅ s,
where h is Planck’s constant.
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Figure 1.1: Stern-Gerlach experiment [1].
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1.3 Five Experiments

Let’s turn our attention to five simple experiments that will tell us much

about the structure of quantum mechanics. One can think of these experiments

as thought experiments in which technical difficulties are hidden.

1.3.1 Experiment 1

Let’s say a particle that exits a device in which there is an inhomogeneous

magnetic field parallel to the z axis with Sz = ~
2

is in the state ∣+⟩ (we discard

other particles). The symbol ∣+⟩, called a ket vector is convenient way of denoting

this state. Suppose a beam of particles, each of which is in this state, enters

another Stern-Gerlach device with magnetic field in z direction. We find that

all particles exit in the state ∣+⟩ as indicated in fig. 1.2.

Figure 1.2: Experiment 1

1.3.2 Experiment 2

The first part of this experiment is the same as in experiment 1 i.e. we keep

only particles in state ∣+⟩ coming out of the first SG device. We next send this

beam into SG device with inhomogeneous magnetic field oriented along the x

axis. We find that 50% of the particles exit the second device with Sx = ~
2

and

are therefore in the state ∣+⟩x, while the other 50% exit with Sx = −~
2

and are

therefore in the state ∣−⟩x (see fig. 1.3). For completeness, we note that if we

select the beam of particles exiting the initial SG apparatus in the state ∣−⟩
instead of ∣+⟩ and send this beam through the second device, we also find that

50% of the particles yield ~
2

for a measurement of Sx and 50% yield −~
2

for a

measurement of Sx.
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Figure 1.3: Experiment 2

1.3.3 Experiment 3

Let’s add a third SG apparatus to experiment 2, but with its inhomogeneous

field oriented along the z axis (see 1.4). If we send the beam of particles exiting

the second SG device in the state ∣+⟩x through the last device, we find that 50%

of the particles exit in the state ∣+⟩ and 50% exit in the state ∣−⟩. Initially, none of

the particles entering the second device was in the state ∣−⟩, so the measurement

of Sx must have modified the state of the system. Hence, we cannot think of

the beam entering the last SG device as comprised of particles with Sz = ~
2

and

Sx = ~
2

as one might expect.

Figure 1.4: Experiment 3
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1.3.4 Experiment 4

This experiment is conceptually the same as experiment 3, but this time we

keep particles in state ∣−⟩x coming out of the second SG device (see fig. 1.5).

Note that we get the same results at the last SG device.

Figure 1.5: Experiment 4

1.3.5 Experiment 5

As in experiment 3, a beam of particles in the state ∣+⟩ from the first SG

apparatus enters the second device with magnetic field along the x axis, but

this time we do not block one of the paths. We then send the beam into the

third SG device, same as in experiment 3. As indicated in fig. 1.6 we find that

100% of the particles exit the last SG device in the state ∣+⟩. Before carrying

out experiment 5, it may seem obvious (based on results of experiments 3 and

4) that 50% of the particles passing through the last analyzer would be in the

state ∣+⟩ and 50% in the state ∣−⟩

Figure 1.6: Experiment 5

1.4 Quantum State Vectors

The mathematics of quantum mechanics is the mathematics of linear vector

spaces. The vector spaces of quantum mechanics are like the ordinary three-

dimensional spaces of vectors from elementary physics, except that the scalar
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product is complex, the dimension is arbitrary and we use different notation for

vectors (Dirac’s notation).

The analysis of Stern-Gerlach experiments revealed that there are only two

possible values of every experiment of Sz. Let these two results correspond to

two vectors ∣+⟩ and ∣−⟩. These two vectors form a complete set of basis vectors.

Hence, any other ket can be written as a linear combination of the two basis

kets:

∣ψ⟩ = α ∣+⟩ + β ∣−⟩ . (1.5)

From elementary linear algebra we know that for every vector space there is

a corresponding dual space of linear functionals. We call elements of this dual

space ”bra” and denote them as ⟨ψ∣. If ∣ψ⟩ is a vector as defined in 1.5, then the

corresponding bra is defined as

⟨ψ∣ = α∗ ⟨+∣ + β∗ ⟨−∣ . (1.6)

The scalar (dot) product in quantum mechanics is most commonly written

as the product of a bra and a ket i.e. if we have ∣ψ⟩ and ⟨φ∣, then their scalar

product is

⟨φ∣ψ⟩. (1.7)

Using this notation, we can express orthonormality of {∣+⟩ , ∣−⟩} basis:

⟨+ ∣+⟩ = 1,

⟨− ∣−⟩ = 1,
(1.8)

⟨+ ∣−⟩ = 0,

⟨− ∣+⟩ = 0.
(1.9)

Notice that when we multiply 1.5 from the left by ⟨+∣, we obtain the first coef-

ficient of ∣ψ⟩:
⟨+ ∣ψ⟩ = α. (1.10)

Likewise, it is easy to see that ⟨− ∣ψ⟩ = β. Hence, we can express ∣ψ⟩ as

∣ψ⟩ = α ∣+⟩ + β ∣−⟩
= ∣+⟩ ⟨+ ∣ψ⟩ + ∣−⟩ ⟨− ∣ψ⟩ .

(1.11)

Now, let’s multiply 1.6 from the rifgt by ∣+⟩. We obtain

⟨ψ ∣+⟩ = α∗. (1.12)
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Comparing 1.10 and 1.12 we see that reversing vectors in inner product results

in a complex conjugation of the inner product:

⟨+ ∣ψ⟩ = ⟨ψ ∣+⟩∗ . (1.13)

This is true in general:

⟨φ ∣ψ⟩ = ⟨ψ ∣φ⟩∗ . (1.14)

Postulate 1 says about a normalized vector. If we apply this normalization re-

quirement to a general state ∣ψ⟩, then we obtain

⟨ψ ∣ψ⟩ = ∣α∣2 + ∣β∣2 = 1. (1.15)

Now comes the crucial element of quantum mechanics. We postulate that the

probability that the quantum state described by the vector ∣ψ⟩ is measured to

be in the corresponding basis state is given by ∣⟨+ ∣ψ⟩ ∣2 and ∣⟨− ∣ψ⟩ ∣2 (postulate

4). Thus

PSz= ~
2
= ∣⟨+ ∣ψ⟩ ∣2, (1.16)

and

PSz=− ~
2
= ∣⟨− ∣ψ⟩ ∣2. (1.17)

1.5 Analysis of Experiments 1 and 2

Let’s try to predict the results of experiment 1. All particles that went to

the second analyzer were in the state ∣+⟩. Because we know that the basis states

are normalized and orthogonal, the probabilities are

P+ = ∣⟨+ ∣+⟩ ∣2 = 1,

P− = ∣⟨− ∣+⟩ ∣2 = 0.
(1.18)

We will use the results of the second experiment to figure out how the states

∣+⟩x and ∣−⟩x behave mathematically. Since the vectors {∣+⟩ , ∣−⟩} form a basis,

we can express ∣+⟩x and ∣−⟩x as

∣+⟩x = α ∣+⟩ + β ∣−⟩ ,
∣−⟩x = δ ∣+⟩ + γ ∣−⟩ ,

(1.19)

for some unknown (possibly complex) coefficients: α, β, δ and γ. Notice, that the

second SG apparatus found 50% probability of each of the two possible states
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∣+⟩x and ∣−⟩x, when the input state was ∣+⟩. Hence

P1,+x = ∣x⟨+ ∣+⟩ ∣2 = ∣α∗∣2 = ∣α∣2 = 1

2
. (1.20)

Similarly, we find

∣β∣2 = ∣γ∣2 = ∣δ∣2 = 1

2
. (1.21)

Because each coefficient is complex, each has an amplitude and phase. However,

the overall phase of a quantum system is not physically meaningful and this fact

lets us write the desired states as

∣+⟩x = 1√
2
( ∣+⟩ + eiα ∣−⟩ ),

∣−⟩x = 1√
2
( ∣+⟩ + eiβ ∣−⟩ ).

(1.22)

Orthogonality condition leads to

x⟨− ∣+⟩x = 0→ ei(α−β) = −1→ α − β = ±π. (1.23)

Since we are free to choose any α and β satisfying 1.23, so let us choose α = 0

and β = π. Finally, we obtain

∣+⟩x = 1√
2
( ∣+⟩ + ∣−⟩ ),

∣−⟩x = 1√
2
( ∣+⟩ − ∣−⟩ ).

(1.24)

We generally use the {∣+⟩ , ∣−⟩} as the preferred basis for writing general states,

but we could use any basis we choose. If we were to use {∣+⟩x , ∣−⟩x} basis, then

we could express ∣±⟩ kets as

∣+⟩ = 1√
2
( ∣+⟩x + ∣−⟩x ),

∣−⟩ = 1√
2
( ∣+⟩x − ∣−⟩x ).

(1.25)

1.6 Matrix Notation

Up to this point we were working in the abstract setting. Now, it’s time to

simplify things a little bit by providing a concrete representation for vectors and

operators. Since {∣+⟩ , ∣−⟩} form a basis in a two-dimensional space, let’s express

both of them as column vectors:

∣+⟩ ≡
⎛
⎝

1

0

⎞
⎠
, (1.26)
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and

∣−⟩ ≡
⎛
⎝

0

1

⎞
⎠
. (1.27)

Then we can represent kets ∣+⟩x and ∣−⟩x as

∣+⟩x =
1√
2

⎛
⎝

1

1

⎞
⎠
, (1.28)

and

∣−⟩x =
1√
2

⎛
⎝

1

−1

⎞
⎠
. (1.29)

And the general ket

∣ψ⟩ = α ∣+⟩ + β ∣−⟩ (1.30)

is represented as

∣ψ⟩ =
⎛
⎝
α

β

⎞
⎠
. (1.31)

We saw earlier that an inner product of a bra and a ket yields a single complex

number. In order for the matrix rules of multiplication to be used, a bra must

be represented by a row vector. Hence, a bra

⟨ψ∣ = α∗ ⟨+∣ + β∗ ⟨−∣ , (1.32)

must be represented as

∣ψ⟩ = (α∗ β∗) . (1.33)

Now, the scalar product of ∣ψ⟩ with its corresponding bra can be expressed as

⟨ψ ∣ψ⟩ = (α∗ β∗)
⎛
⎝
α

β

⎞
⎠
= ∣α∣2 + ∣β∣2. (1.34)

1.7 Operators, Eigenvalues, Eigenvectors

An operator is a mathematical object that acts on a ket and transforms it

into a new ket:

Ô ∣ψ⟩ = ∣φ⟩ (1.35)

If Ô ∣ψ⟩ = λ ∣ψ⟩, where λ is a number, then we say ∣ψ⟩ in an eigenvector of Ô and

λ is its eigenvalue. When we combine the results from previous sections with

postulates 2 and 3, we come to the conclusion that eigenvalue equations for the
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Sz operator are:

Sz ∣+⟩ = ~
2
∣+⟩

Sz ∣−⟩ = −~
2
∣−⟩ .

(1.36)

Using 1.36 we are going to deduce the matrix elements of Sz, which must be

2 × 2 matrix:

Sz =
⎛
⎝
a b

c d

⎞
⎠

(1.37)

When we substitute 1.26, 1.27 and 1.37 into 1.36 we easily obtain

a = ~
2
, b = 0, c = 0, d = −~

2
. (1.38)

So the matrix representation of the operator Sz is

Sz =
~
2

⎛
⎝

1 0

0 −1

⎞
⎠

(1.39)

Now, consider the general operator Ô, whose matrix representation we would

like to determine:

Ô =
⎛
⎝
a b

c d

⎞
⎠

(1.40)

To obtain a particular coefficient, we ”sandwich” an operator between a bra and

a ket:

⟨+∣ Ô ∣+⟩ = a, ⟨+∣ Ô ∣−⟩ = b, . . . (1.41)

The final result is

Ô =
⎛
⎝
⟨+∣ Ô ∣+⟩ ⟨+∣ Ô ∣−⟩
⟨−∣ Ô ∣+⟩ ⟨−∣ Ô ∣−⟩

⎞
⎠
. (1.42)

We call the expression of the form

Oij = ⟨i∣ Ô ∣j⟩ (1.43)

a matrix element.

1.8 Hermitian and Projection Operators

So far we have only discussed the action of operators on kets:

Â ∣ψ⟩ = ∣φ⟩ . (1.44)
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Notice, that in expression 1.44, the operator Â acts on ∣ψ⟩ from the left. If we

want to define the action of an operator Â on a bra, we must place it on the

righ hand side of it:

⟨η∣ = ⟨ψ∣ Â. (1.45)

Comparing eq. 1.44 and 1.45 we might suspect, that ⟨η∣ should be equal to ⟨φ∣,
but this not the case. Rather the bra ⟨φ∣ is found by defining a new operator Â�

that obeys

⟨φ∣ = ⟨ψ∣ Â�. (1.46)

We call this new operator Â� the Hermitian adjoint of the operator Â. Even

though Â� is a completely new operator, it has quite strong connection with

operator Â. to discover it, we multiply both side of equation 1.46 by an arbitrary

ket ∣α⟩:
⟨φ ∣α⟩ = ⟨α ∣φ⟩∗

( ⟨ψ∣ Â�) ∣α⟩ = [⟨α∣(Â ∣ψ⟩ )]
∗

⟨ψ∣ Â� ∣α⟩ = ⟨α∣Â ∣ψ⟩∗
(1.47)

The last equation in 1.47 says, that the matrix representing Â� is found by

transposing and complex conjugating the matrix representing Â. It may happen

that an operator Â is equal to its Hermitian conjugate:

Â = Â�, (1.48)

and if this is the case, we call Â a Hermitian operator. In quantum mechanics, all

operators that correspond to physical observables are Hermitian. It is because

Hermitian operators have real eigenvalues and their eigenvectors comprise a

complete set of basis states.

Another very important class of operators are projection operators. To in-

troduce them, let’s look at 1.11

∣ψ⟩ = ⟨+ ∣ψ⟩ ∣+⟩ + ⟨− ∣ψ⟩ ∣−⟩
= ∣+⟩ ⟨+ ∣ψ⟩ + ∣−⟩ ⟨− ∣ψ⟩
= ( ∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣ ) ∣ψ⟩

(1.49)

Comparing both sides of eq. 1.49 we conclude, that the term in parentheses

must be the identity operator:

∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣ = 1̂. (1.50)
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The individual operators ∣+⟩ ⟨+∣ and ∣−⟩ ⟨−∣ are called projection operators. Their

matrix representation is:

P̂+ = ∣+⟩ ⟨+∣ = (1 0)
⎛
⎝

1

0

⎞
⎠
=
⎛
⎝

1 0

0 0

⎞
⎠
, (1.51)

and

P̂− = ∣−⟩ ⟨−∣ = (0 1)
⎛
⎝

0

1

⎞
⎠
=
⎛
⎝

0 0

0 1

⎞
⎠
. (1.52)

In general, any operator P̂ which is Hermitian and satisfies the relation P̂ 2 = P̂
is said to be a projection operator.

We found previously that the probability of a measurement is given by the

square of the inner product of initial and final states (postulate 4). Using the

new projection operators, we can rewrite this probability as

p+ = ∣⟨+ ∣ψ⟩ ∣2

= ⟨+ ∣ψ⟩∗ ⟨+ ∣ψ⟩
= ⟨ψ ∣+⟩ ⟨+ ∣ψ⟩
= ⟨ψ∣ P̂+ ∣ψ⟩

. (1.53)

Using projection operators, we can also describe the change of the quantum

state after the measurement (postulate 5):

∣ψ′⟩ = P̂+ ∣ψ⟩√
⟨ψ∣ P̂+ ∣ψ⟩

= ∣+⟩ . (1.54)

1.9 Analysis of Experiments 3-5

Let’s try to analyze the results of experiments 3-5 using developed tools. We

need to discuss the probability that an atom leaving the first analyzer in the ∣+⟩
state is detected in one of the counters connected to the output ports of the third

analyzer. Such a probability involves two measurements at the second and third

analyzers. The total probability is the product of the individual probabilities of

each measurements. In particular, the probability of measuring an atom at the

top most counter is the probability of measuring Sx = ~
2

at the second analyzer

times the probability of measuring Sz = ~
2

at the third analyzer:

Pupper,+ = ∣⟨+ ∣+⟩x ∣
2∣x⟨+ ∣+⟩ ∣2. (1.55)
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Similarly, we calculate other probabilities:

Pupper,− = ∣⟨− ∣+⟩x ∣
2∣x⟨+ ∣+⟩ ∣2 (1.56)

Plower,+ = ∣⟨+ ∣−⟩x ∣
2∣x⟨− ∣+⟩ ∣2 (1.57)

Plower,− = ∣⟨− ∣−⟩x ∣
2∣x⟨− ∣+⟩ ∣2 (1.58)

For experiment 5, both output ports of the second analyzer are connected to

the third SG apparatus. Because both states are used, the relevant projection

operator is the sum of the two projection operators for each port i. e. P̂+x and

P̂−x.

∣ψ2⟩ =
(P̂+x + P̂−x) ∣+⟩√
⟨+∣ (P̂+x + P̂−x) ∣+⟩

= ∣+⟩ (1.59)

The sum of projection operators in 1.59 is equal to the identity operator, hence

∣ψ2⟩ = ∣+⟩. That’s why all particles coming out of the third analyzer are in the

state ∣+⟩.

1.10 Mean Value and Standard Deviation

Consider a random variable X with a finite list x1, x2, . . . xn of possible

outcomes, each of which has probability p1, p2, . . . pn of occuring. The mean

value of X is defined as

⟨X⟩ =∑
i

xipi. (1.60)

Let’s calculate the mean value of Sz measurement for spin 1
2

system:

⟨Sz⟩ = (~
2
)p+ + ( − ~

2
)p−

= ~
2
∣⟨+ ∣ψ⟩ ∣2 + −~

2
∣⟨− ∣ψ⟩ ∣2

= ~
2
⟨ψ ∣+⟩ ⟨+∣ψ⟩ − ~

2
⟨ψ ∣−⟩ ⟨−∣ψ⟩

= ⟨ψ∣Sz( ∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣ ) ∣ψ⟩

(1.61)

Since ∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣ is the identity matrix, we obtain

⟨Sz⟩ = ⟨ψ∣Sz ∣ψ⟩ . (1.62)
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The above result holds for any quantum mechanical observable:

⟨Ô⟩ = ⟨ψ∣ Ô ∣ψ⟩ . (1.63)

In addition to the mean value, it is common to characterize a measurement by

the standard deviation, which gives us information about the spread of measure-

ment results about the mean. Formally, for a random variable X it is defined

as

∆X =
√

⟨(X − ⟨X⟩)2⟩ =
√

⟨X2⟩ − ⟨X⟩2. (1.64)

Eq. 1.64 expressed in the language of operators is

∆Ô =
√

⟨Ô2⟩ − ⟨Ô⟩2, (1.65)

where

⟨Ô2⟩ = ⟨ψ∣ Ô2 ∣ψ⟩ . (1.66)

1.11 Commuting observables

The product of two operators is generally not commutative i.e. ÂB̂ ≠ B̂Â. To

express this incompatibility of two operators we introduce a new object called

a commutator:

[Â, B̂] = ÂB̂ − B̂Â. (1.67)

Two operators are said to commute if their commutator is equal to zero

[Â, B̂] = 0 ⇐⇒ ÂB̂ = B̂Â. (1.68)

Any operator commutes with itself:

[Â, Â] = 0 (1.69)

Thus, for commuting operators the order of operation does not matter, whereas

it does for noncommuting operatos. Now, let ∣a⟩ be an eigenstate of the operator

Â with eigenvalue a:

Â ∣a⟩ = a ∣a⟩ (1.70)

If we multiply both sides of eq. 1.70 from the left by B and suppose that Â and

B̂ commute:

B̂Â ∣a⟩ = B̂a ∣a⟩→ Â(B̂ ∣a⟩ ) = a(B̂ ∣a⟩ ), (1.71)
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then we notice, that the vector B̂ ∣a⟩ is also an eigenstate of the operator Â with

the same eigenvalue. Therefore, the state B̂ ∣a⟩ must be some scalar multiple of

the state ∣a⟩:
B̂ ∣a⟩ = b ∣a⟩ , (1.72)

which is just an eigenvalue equation for the operator B̂. Therefore, we can

conclude, that commuting operators have a common set of eigenstates. This has

profound physical consequences, namely these two observables can be measured

simultaneously. As an example, we may mention the commutators involving spin

component operators. The complete commutation relations are

[Sx, Sy] = i~Sz, (1.73)

[Sy, Sz] = i~Sx, (1.74)

[Sz, Sx] = i~Sy. (1.75)

We see that spin operators do not commute and cannot be simultaneously mea-

sured.

1.12 Uncertainty Principle

An interesting application of the commutator algebra is to derive a general

relation giving the uncertainties product of two operators, Â and B̂. This is

known as the Heisenberg’s uncertainty relation. We only state the general result

here:

∆Â∆B̂ ≥ 1

2
∣⟨[Â, B̂]⟩∣ (1.76)

As an example, we can lower bound the product of uncertainties for two spin

component operators:

∆Sx∆Sy ≥
1

2
∣⟨[Sx, Sy]⟩∣ ≥

~
2
∣⟨Sz⟩∣ (1.77)

The most important uncertainty relation, which we are going to derive soon,

involves the position and momentum operators:

∆x∆p ≥ ~
2
. (1.78)
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1.13 General Quantum Systems

The mathematical formalism developed so far for spin 1
2

systems can be

extended to higher dimensional systems. Suppose we have an observable Ô for

which there are n possible measurement results o1, o2, o3, . . . on. The basis ket

corresponding to the result oi is ∣oi⟩. The orthonormality condition then reads

⟨oi ∣oj⟩ = δij , (1.79)

where δij is the Kronecker delta, and an arbitrary ket ∣ψ⟩ can be expressed as

∣ψ⟩ =∑
i

⟨oi ∣ψ⟩ ∣oi⟩ . (1.80)

The generalization of postulate 4 says that the probability of a measurement of

one of the possible results on is

Pon = ∣⟨on ∣ψ⟩ ∣2. (1.81)

The eigenequation for Ô is

Ô ∣on⟩ = on ∣on⟩ . (1.82)

In the basis formed by the eigenstates ∣on⟩ the matrix representing the operator

Ô is diagonal

Ô =

⎛
⎜⎜⎜⎜⎜⎜
⎝

o1 0 0 . . .

0 o2 0 . . .

0 0 o3 . . .

⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (1.83)

and its size depends on the dimensionality of the system. In the same basis, the

eigenstates are represented by the column vectors

∣o1⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

0

0

⋮

⎞
⎟⎟⎟⎟⎟⎟
⎠

, ∣o2⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

1

0

⋮

⎞
⎟⎟⎟⎟⎟⎟
⎠

, . . . (1.84)

The projection operator corresponding to measurement of the eigenvalue on is

P̂on = ∣on⟩ ⟨on∣ , (1.85)
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and the sum of all projection operators is the identity operator

∑
n

P̂n =∑
n

∣on⟩ ⟨on∣ = 1̂. (1.86)

1.14 Infinite Dimensional Quantum Systems

To introduce infinite dimensional systems, we need to look at classical physics.

Classical mechanics is governed by Newton’s law

F⃗ =ma⃗. (1.87)

The goal is to predict the function ⃗r(t) of some body. Another method is based

on energy. The total mechanical energy of a system is sum of kinetic (T ) and

potential (V ) energies: E = T+V . These two methods are related by the equation

Fx = −
dV

dx
, (1.88)

and hence the potential energy function is what determines the classical motion

of a body.

Energy method is crucial in quantum mechanics. The last postulate says

that the time evolution of a state is given by the Schrödinger equation

i~
d

dt
∣ψ(t)⟩ = Ĥ(t) ∣ψ(t)⟩ , (1.89)

where the Hamiltonian operator Ĥ represents the energy observable of the sys-

tem. The prescription for finding a quantum mechanical Hamiltonian operator

is to find the classical expression for the energy of the system:

E = p2x
2m

+ V (x), (1.90)

and then replace classical momentum and position with quantum mechanical

operators:

Ĥ = p̂x
2

2m
+ V (x̂). (1.91)

It turns out that the action of the operator x̂ is represented by multiplication by

x and the action of the momentum operator p̂ is represented by differentiation:

x̂ ≡ x

p̂ ≡ −i~ d
dx

(1.92)
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When we described spin- 1
2

systems, we represented each ket (for example ∣+⟩)
as a 2 × 1 column vector. If we call the position eigenstates ∣xi⟩ then we could

try to express (by analogy to spin- 1
2

case) and arbitrary ket ∣ψ⟩ as

∣ψ⟩ ≡

⎛
⎜⎜⎜⎜⎜⎜
⎝

⟨x1 ∣ψ⟩
⟨x2 ∣ψ⟩
⟨x3 ∣ψ⟩

⋮

⎞
⎟⎟⎟⎟⎟⎟
⎠

(1.93)

where the projection ⟨xi ∣ψ⟩ is the probability amplitude for the state ∣ψ⟩ to be

measured in the position eigenstate ∣xi⟩. The problem is that the position is not

a quantized observable. There is a continuity of possible values of x. Hence the

representation 1.93 is not adequate in this case. The natural way to represent

such continuous set of numbers is a continuous function ψ(x), called the wave

function. The wave function expressed in Dirac notation is

ψ(x) = ⟨x ∣ψ⟩ . (1.94)

The meaning of eq. 1.94 is that ψ(x) is the probability amplitude for the quan-

tum state ∣ψ⟩ to be measured in the position eigenstate ∣x⟩. The probability

density is equal to

P (x)dx = ∣ψ(x)∣2dx. (1.95)

So if we want to compute the probability that a particle is to be found in a

finite interval a < x < b we need to calculate the integral

Pa<x<b = ∫
b

a
∣ψ(x)∣2dx. (1.96)

The normalization condition in the wave function language is expressed as

⟨ψ ∣ψ⟩ = 1→ ∫
∞

−∞
ψ∗(x)ψ(x)dx = 1 (1.97)

The scalar product between two kets is defined as

⟨φ ∣ψ⟩ = ∫
∞

−∞
φ∗(x)ψ(x)dx. (1.98)

The mean value of an operator is defined similarly to discrete case. For example,

for position and momentum operators (using 1.92) we have:

⟨x̂⟩ = ⟨ψ∣ x̂ ∣ψ⟩ = ∫
∞

−∞
ψ∗(x)xψ(x)dx = ∫

∞

−∞
x∣ψ(x)∣2dx, (1.99)
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and

⟨p̂⟩ = ⟨ψ∣ p̂ ∣ψ⟩ = ∫
∞

−∞
ψ∗(x)( − i~ d

dx
)ψ(x)dx. (1.100)

Later we will find that in many cases we do not have to solve the full equation

1.89, but only the energy eigenvalue equation (time-independent Schrödinger

equation) Ĥ ∣Ei⟩ = Ei ∣Ei⟩, that in the wave function notation takes the form

ĤψEi(x) = EiψEi(x). (1.101)

Inserting 1.91 into the above equation and using 1.92 gives

ĤψEi(x) = EiψEi(x)→ ( − ~2

2m

d2

dx2
+ V (x))ψEi(x) = EiψEi(x). (1.102)
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Chapter 2

Schrödinger Time Evolution

2.1 Schrödinger Equation

One of the postulates of quantum mechanics says that the time evolution of

a quantum system is governed by the Schrödinger equation

i~
d

dt
∣ψ(t)⟩ = Ĥ(t)ψ(t), (2.1)

where the Hamiltonian Ĥ is the operator of the total energy. The eigenvalues

of Ĥ are the allowed energies that the system can have.

In practice we do not have to solve 2.1 directly. Let’s try to see why. Since

the Hamiltonian Ĥ is a Hermitian operator, its eigenstates form a complete

basis, which means that we can express an arbitrary quantum state as a super-

position of these eigenstates. For simplicity assume, that Ĥ is time independent,

eigenvectors of Ĥ are orthonormal

⟨Ek ∣En⟩ = δkn (2.2)

and form a countable set. Let’s expand a general state vector as

∣ψ(t)⟩ =∑
n

cn(t) ∣En⟩ . (2.3)

Now we substitute 2.3 into 2.1:

i~
d

dt
∑
n

cn(t) ∣En⟩ = Ĥ∑
n

cn(t) ∣En⟩ . (2.4)
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Using the linearity of d
dt

and Ĥ operators we can write

i~∑
n

dcn(t)
dt

∣En⟩ =∑
n

cn(t)En ∣En⟩ . (2.5)

Next step is to multiply both sides of 2.5 from the left by ⟨Ek ∣ and use the

orthonormality relation 2.2:

i~∑
n

dcn(t)
dt

δkn =∑
n

cn(t)Enδkn, (2.6)

which leads to

i~
dck(t)
dt

= ck(t)Ek. (2.7)

After a small rearrangement we obtain the differential equation

dck(t)
dt

= −iEk
~
ck(t), (2.8)

whose solution is

ck(t) = ck(0)e−
iEkt

~ , (2.9)

where ck(0) is intial condition constant, which we denote simply as ck hereafter.

So if the initial state of the quantum system at time t = 0 is

∣ψ(0)⟩ =∑
n

cn ∣En⟩ , (2.10)

then the state vector at time t is given by

∣ψ(t)⟩ =∑
n

cne
− iEkt~ ∣En⟩ . (2.11)

2.2 Stationary States and Superposition

Let’s illustrate the evolution of a quantum state vector with few examples.

First, consider the situation where the system is initially in one particular energy

eigenstate:

∣ψ(0)⟩ = ∣E1⟩ . (2.12)

To find its time evolution it’s enough to multiply 2.12 by the phase factor e−
iE1t

~ :

∣ψ(t)⟩ = e−
iE1t

~ ∣E1⟩ . (2.13)
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Now, suppose we want to measure some observable Ô. Then the probability of

measuring a value oj is

Poj = ∣⟨oj ∣ψ(t)⟩ ∣
2 = ∣ ⟨oj ∣ e−

iE1t

~ ∣E1⟩ ∣
2 = ∣⟨oj ∣E1⟩ ∣

2
, (2.14)

which is independent of time and is equal to the probability at the initial time.

We call such states (energy eigenstates) stationary.

Suppose now that the state vector is a superposition of two energy eigen-

states:

∣ψ(0)⟩ = c1 ∣E1⟩ + c2 ∣E2⟩ . (2.15)

We multiply by the corresponding phase factors:

∣ψ(t)⟩ = c1e−
iE1t

~ ∣E1⟩ + c2e−
iE2t

~ ∣E2⟩ . (2.16)

The probability of measuring the value of, say E1 is

PE1 = ∣⟨E1 ∣ψ(t)⟩ ∣
2 = ∣ ⟨E1∣ (c1e−

iE1t

~ ∣E1⟩ + c2e−
iE2t

~ ∣E2⟩ )∣
2 = ∣c1∣2, (2.17)

which again is time independent. Of course the same is true for E2. But consider

the situation where we would like to measure some other observable Ô. The

interesting case is when Ô does not commute with Ĥ, so suppose this is the

case. Then, in general the eigenstate ∣oj⟩ of Ô corresponding to a measurement

value oj is a superposition of energy eigenstates, say:

∣o1⟩ = α1 ∣E1⟩ + α2 ∣E2⟩ . (2.18)

The probability of measuring o1 is then

Po1 = ∣⟨o1 ∣ψ(t)⟩ ∣
2

= ∣(α∗1 ⟨E1∣ + α∗2 ⟨E2∣ )(c1e−
iE1t

~ ∣E1⟩ + c2e−
iE2t

~ ∣E2⟩ )∣
2

= ∣α∗1c1e−
iE1t

~ + α∗2c2e−
iE2t

~ ∣2

= ∣e−
iE1t

~ ∣2∣α∗1c1 + α∗2c2e−
i(E2−E1)t

~ ∣2

= ∣α1∣
2∣c1∣

2 + ∣α2∣
2∣c2∣

2 + 2R(α1c
∗
1α

∗
2c2e

− i(E2−E1)t

~ ),

(2.19)

which is clearly time-dependent. To summarize, the following paragraph gives

a recipe for solving any problem with a time-independent Hamiltonian

Given a time-independent Hamiltonian Ĥ and an initial state ∣ψ(0)⟩, to

compute the probability that the eigenvalue oj of an observable Ô is measured

at time t:
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1. Diagonalize Ĥ i.e. find the eigenvalues En and eigenvectors ∣En⟩.

2. Write ∣ψ(0)⟩ and ∣oj⟩ as a superposition of the energy eigenstates ∣En⟩.

3. Multiply each eigenstate coefficient of ∣ψ(0)⟩ by the term e−
iEnt

~ to get

∣ψ(t)⟩.

4. Calculate Poj = ∣⟨oj ∣ψ(t)⟩ ∣
2

2.3 Spin Precession

Let’s try to apply the recipe from the previous section to solve a problem

of spin 1
2

particle interacting with a magnetic field. Consider an electron with

mass me and charge e in magnetic field B⃗. The Hamiltonian of this system is

Ĥ = e

me
S⃗ ⋅ B⃗. (2.20)

To make things simple we assume that the magnetic field is uniform and directed

along the z-axis:

B⃗ = B0ẑ. (2.21)

Then the Hamiltonian Ĥ reduces to

Ĥ = eB0

me
Sz = ω0Sz. (2.22)

It is convenient to introduce a new constant

ω0 ≡
eB0

me
, (2.23)

The Hamiltonian in matrix form is

Ĥ = ~ω0

2

⎛
⎝

1 0

0 −1

⎞
⎠
. (2.24)

Because the Hamiltonian is diagonal, there’s no need to do step 1 in the above

recipe. We have two eigenstates: ∣+⟩ and ∣−⟩:

∣+⟩ = ∣E+⟩ =
⎛
⎝

1

0

⎞
⎠
, ∣−⟩ = ∣E−⟩ =

⎛
⎝

0

1

⎞
⎠
, (2.25)

which satisfy:

Ĥ ∣+⟩ = ~ω0

2
∣+⟩ = E+ ∣+⟩ (2.26)
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and

Ĥ ∣−⟩ = −~ω0

2
∣−⟩ = E− ∣−⟩ . (2.27)

There are also two possible energies:

E+ =
~ω0

2
, E− = −

~ω0

2
. (2.28)

Now consider a few examples. The simples case is when the initial state is

spin up along the z-axis. Then, following steps 2 and 3:

∣ψ(0)⟩ = ∣+⟩→ ∣ψ(t)⟩ = e−
iE+t

~ ∣+⟩ = e−
iω0t

2 ∣+⟩ . (2.29)

The probability of measuring the energy E+ (or spin ”up”) is thus

P+ = ∣⟨+ ∣ψ(t)⟩ ∣2 = 1. (2.30)

Notice, that the probability doen not depend on time, as was expected based

on the general discussion in the previous section.

Now let’s see what happens when the initial state vector is a superposition

of spin up and spin down. The most general superposition expressed in spherical

coordinates and parametrized by two angles: θ and φ is

∣ψ(0)⟩ = cos
θ

2
∣+⟩ + sin

θ

2
eiφ ∣−⟩ , (2.31)

or in matrix notation:

∣ψ(0)⟩ =
⎛
⎝

cos θ
2

sin θ
2
eiφ

⎞
⎠
. (2.32)

The state vector evolves with time according to

∣ψ(t)⟩ =
⎛
⎝
e−

iE+t
~ cos θ

2

e−
iE−t

~ sin θ
2
eiφ

⎞
⎠
=
⎛
⎝
e−

iω0t

2 cos θ
2

e
iω0t

~ eiφ sin θ
2

⎞
⎠
= e−

iω0t

2
⎛
⎝

cos θ
2

ei(ω0t+φ) sin θ
2

⎞
⎠
. (2.33)

The probability of measuring the energy E+ is

P+ = ∣⟨+ ∣ψ(t)⟩ ∣2 = cos2 (θ
2
), (2.34)

which again is independent of time. This is because the Sz commutes with Ĥ

and eigenstates of Sz are also energy eigenstates. Let’s see what happens when

we try to measure spin along different axis. For example, the probability for
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measuring spin up along the x-axis is

P+x = ∣⟨+x ∣ψ(t)⟩ ∣2 = 1

2
(1 + sin θ cos(φ + ω0t)), (2.35)

which is time dependent, because Ŝx doesn’t commute with Ĥ. The time-

dependence of 2.35 is a manifestation of the spin precessing around the z-axis.

Let’s calculate the expectation values for each of the spin components:

⟨Sz⟩ = ⟨ψ(t)∣Sz ∣ψ(t)⟩ =
~
2

cos θ, (2.36)

⟨Sy⟩ = ⟨ψ(t)∣Sy ∣ψ(t)⟩ =
~
2

sin θ sin(φ + ω0t) (2.37)

and

⟨Sx⟩ = ⟨ψ(t)∣Sx ∣ψ(t)⟩ =
~
2

sin θ cos(φ + ω0t) (2.38)

If we build a vector (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩) from the expectation values we see it

precess around the magnetic field direction with an angular frequency ω0. This

precession is known as Larmor precession.
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Chapter 3

Particle in a Box

3.1 Motivation

Physicists try to understand the building blocks of our Universe i.e. atoms,

nuclei, molecules, solids etc. The key to understanding the structure of matter

lies in the energy states that the systems are allowed to have. Each microscopic

system has a unique set of energy levels (kind of a fingerprint) that uniquely

identifies it, see fig. 3.1

Figure 3.1: Spectra of various elements [2].
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With help of quantum mechanics we can build the model for the specific sys-

tem and calculate its fingerprint. Particle in a box model is simple and exhibits

most of the important features shared by all microscopic systems.

3.2 Infinite Square Well

The Schrödinger equation for a single non-reletivistic particle in one dimen-

sion is

( − ~2

2m

d2

dx2
+ V (x))ψE(x) = EψE(x). (3.1)

In order to solve it, one must specify the potential function V (x). In infinite

square well model we take the potential function

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞, x ≤ 0

0, 0 < x < L

∞, x ≥ L,

which is schematically depicted if fig. 3.2

Figure 3.2: Infinite square potential energy well [3].

The potential energy is zero within the well and it is infinite outside the well,

so the particle trapped inside the region 0 < x < L.

Our goal is to solve the Schrödinger equation 3.1 for this potential function.

We need to consider two cases:

( − ~2

2m

d2

dx2
+∞)ψE(x) = EψE(x), outside box (3.2)
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and

( − ~2

2m

d2

dx2
+ 0)ψE(x) = EψE(x), inside box. (3.3)

Since we require particle to have a finite energy, the wave function outside the

well must be identically zero, so we only need to consider what happens inside

the well:

− ~2

2m

d2

dx2
ψE(x) = EψE(x). (3.4)

After a little rearrangement we get

d2

dx2
ψE(x) = −2mE

~2
ψE(x). (3.5)

It’s profitable to define a new parameter

k2 ≡ 2mE

~2
. (3.6)

Then, equation 3.5 becomes

d2

dx2
ψE(x) = −k2ψE(x). (3.7)

Eq. 3.7 is a simple differential equation. Its solution can be expressed in terms

of sine and cosine functions

ψE(x) = A sinkx +B coskx, (3.8)

for some constants A and B. The partial solution is

ψE(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0

A sinkx +B coskx, 0 < x < L

0, x > L.

To reach the final solution we need to figure out what are the values of: A, B

and k. We proceed by imposing boundary conditions on the wave function. We

require the continuity of the wave function at the boundary of the well. This

leads to two equations:

ψE(0) = A sin(0) +B cos(0) = 0 (3.9)

and

ψE(L) = A sin(kL) +B cos(kL) = 0 (3.10)

31



From 3.9 we immediately get

B = 0 (3.11)

and from 3.10

A sin(kL) = 0 (3.12)

Eq. 3.12 is satisfied if A = 0, but this solution is not interesting. Suppose that

A ≠ 0. Then we can divide 3.12 by A to get

sin(kL) = 0 (3.13)

In order for 3.13 to be satisfied, it must be the case that

kL = nπ (3.14)

or

kn =
nπ

L
, n = 1,2,3, . . . (3.15)

We obtained the quantization condition. The index n is the quantum number

used to label the quantized states and energies. The quantization condition

transfers directly to the quantization of energy

En =
~2k2n
2m

(3.16)

or

En =
n2π2~2

2mL2
, n = 1,2,3, . . . (3.17)

It is worth noticing that the allowed energies scale with the square of the quan-

tum number n (see fig. 3.3).

We find A by imposing the normalization condition

∫
∞

−∞
ψ∗n(x)ψn(x)dx = 1. (3.18)

After a simple integration we obtain

1 = ∫
L

0
∣A∣2 sin2 nπx

L
dx = ∣A∣2L

2
. (3.19)

We are free to choose A to be real and positive, since the global phase factor

does not matter

A =
√

2

L
. (3.20)
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The complete solution is

ψn(x) =
√

2

L
sin

nπx

L
, n = 1,2,3, . . . (3.21)

If we square 3.21 we obtain the probability density function, which can be used

to calculate the probability of finding the particle in some region inside the well

Pn(x) = ∣ψn(x)∣2 =
2

L
sin2 nπx

L
. (3.22)

Figure 3.3: Wave functions of the first three energy eigenstates of the infinite
square potential well [4].

3.3 Finite Square Well

Consider now the situation where the potential energy outside the wall is

finite 3.4 and given by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V0, x < −a

0, −a < x < a

V0, x > a.

Assume that the energy E of a particle is less than V0. Our goal is to solve
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Figure 3.4: Finite square potential energy well.

the Schrödinger equation, which takes the form

( − ~2

2m

d2

dx2
+ V0)ψE(x) = EψE(x), outside box. (3.23)

and

( − ~2

2m

d2

dx2
+ 0)ψE(x) = EψE(x), inside box. (3.24)

It is useful to define two constants

k ≡
√

2mE

~2
(3.25)

and

q ≡
√

2m(V0 −E)
~2

. (3.26)

Then the above equations become:

d2ψE(x)
dx2

= −k2ψE(x), inside box (3.27)

and
d2ψE(x)
dx2

= q2ψE(x), outside box (3.28)

Notice that eq. 3.27 is identical to the one for infinite well potential, so it has

the same solution. The equation outside the box 3.28 is qualitatively different,

because the constant on the right hand side of 3.28 is positive. The solution

outside the box is

ψE(x) = Aeqx +Be−qx, (3.29)
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for some constants A and B. The general solution in all regions of space is

ψE(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Aeqx +Be−qx, x < −a

C sinkx +D coskx, −a < x < a

Feqx +Ge−qx, x > a.

Altogether we have six undetermined constants: A, B, C, D, F , G. However,

since in the region x < −a the function e−qx tends to infinity with x → −∞, we

must set B = 0. For similar reasons we must set F = 0. Hence our wave function

must be of the form

ψE(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψI(x) = Aeqx, x < −a

ψII(x) = C sinkx +D coskx, −a < x < a

ψIII(x) = Ge−qx, x > a.

Now we must impose boundary conditions. In infinite square well problem we

required that the wave function must be continuous across a boundary. This is

also the case for the finite potential well, but this is not enough. We must also

require the derivative of the wave function to be continuous across a boundary.

The complete set of conditions is

ψI(x)∣
x=−a

= ψII(x)∣
x=−a

and
dψI(x)
dx

∣
x=−a

= dψII(x)
dx

∣
x=−a

(3.30)

ψII(x)∣
x=a

= ψIII(x)∣
x=a

and
dψII(x)
dx

∣
x=a

= dψIII(x)
dx

∣
x=a

(3.31)

From 3.30 we get

Ae−qa =D coska −C sinka (3.32)

and

qAe−qa = kC coska + kD sinka. (3.33)

And from 3.31 we get

C sinka +D coska = Ge−qa (3.34)

and

kC coska − kD sinka = −qGe−qa (3.35)
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We eliminate A from 3.32 and 3.33 and G from 3.34 and 3.35 to obtain

qD coska − qC sinka = kC coska + kD sinka (3.36)

and

− qC sinka − qD coska = kC coska − kD sinka. (3.37)

If we add eq. 3.36 and 3.37 we get

k cotka = −q. (3.38)

If we subtract eq. 3.36 and 3.37 we get

k tanka = q (3.39)

The crucial thing to notice is that the equations 3.38 and 3.39 cannot be sat-

isfied simultaneously, because if we multiply them, we get k2 = −q2, which is a

contradiction, because both k and q must be positive. Therefore the solution of

the Schrödinger equation splits into two categories:

1. D ≠ 0 and C = 0, which leads to ψII(x) = D coskx - even solutions which

satisfy 3.39.

2. C ≠ 0 and D = 0, which leads to ψII(x) = C sinkx - odd solutions which

satisfy 3.38.

Under the condition 1. equations 3.32 and 3.34 reduce to

Ae−qa =D coska (3.40)

and

Ge−qa =D coska, (3.41)

from which it follows that

ψeven(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψI(x) =D cos(ka)eq(x+a), x < −a

ψII(x) =D coskx, −a < x < a

ψIII(x) =D cos(ka)eq(a−x), x > a.

The constant D is simply derived from the normalization condition:

D =
√

q

aq + 1
. (3.42)
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Similar reasoning leads to odd solutions:

ψodd(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψI(x) = −C sin(ka)eq(x+a), x < −a

ψII(x) = C sinkx, −a < x < a

ψIII(x) = C sin(ka)eq(a−x), x > a,

where

C =
√

q

aq + 1
. (3.43)

Finally, we notice that eq. 3.38 and 3.39 are transcendental, so we can only hope

to find numerical solutions. Graphical analysis of both equations is also help-

ful, but we need to do some preparations. Let’s define some new dimensionless

parameters:

z = ka =
√

2mEa2

~2
, (3.44)

z0 =
√

2mV0a2

~2
, (3.45)

and

qa =
√

2m(V0 −E)a2
~2

. (3.46)

These definitions lead to the convenient expressions

(ka)2 + (qa)2 = z20 (3.47)

and

(qa)2 = z20 − (ka)2 = z20 − z2. (3.48)

This allows us to write the transcendental equations in the form:

ka tan(ka) = qa→ z tan(z) =
√
z20 − z2 (3.49)

and

− ka cot(ka) = qa→ −z cot(z) =
√
z20 − z2. (3.50)

These functions are plotted in fig. 3.5. The intersection points of these curves

determine the allowed values of z and hence the allowed energies En through

eq. 3.44
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Figure 3.5: Graphical solution of the transcendental equations for the allowed
energies of a finite square well [5].
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Chapter 4

Quantum Harmonic

Oscillator

4.1 Clasically

The classical harmonic oscillator system is a mass m connected to a spring

attached to a wall. The motion of a mass is governed by Hooke’s law, which

says that the restoring force is proportional to the displacement x of the mass

from equilibrium:

F = −kx, (4.1)

where k is the spring constant.

Figure 4.1: Mass on a spring [6]

When the spring is stretched or compressed a distance x, the potential energy
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stored in the spring is

V (x) = 1

2
kx2. (4.2)

The mass-on-a-spring system models many other systems in nature that per-

form oscillatory motion. This is the case because one can expand an arbitrary

potential function about the local minimum:

V (x − x0) = V (x0) + (x − x0)
dV

dx
∣
x=x0

+ 1

2
(x − x0)2

d2V

dx2
∣
x=x0

+ . . . (4.3)

In 4.3 we can set V (x0) = 0 as it depends on our choice of the reference point.

In addition dV
dx

∣
x=x0

= 0, because we are expanding about the minimum. Hence

if we set k ≡ d2V
dx2 ∣

x=x0

we obtain V (x − x0) ≈ 1
2
k(x − x0)2 hence the motion of

the system is that of harmonic oscillator.

The solution of the classical harmonic oscillator problem starts by using

Newton’s second law:

F =ma. (4.4)

Since a = d2x
dt2

we can write

− kx =md2x

dt2
. (4.5)

It is convenient to introduce a new constant

ω =
√

k

m
. (4.6)

Then 4.5 takes the form:
d2x

dt2
= −ω2x. (4.7)

The solution of 4.7 is the sinusoidal function

x(t) = A cos(ωt + φ), (4.8)

where A is the amplitude of motion and φ is the phase constant determined by

the initial condictions.

4.2 Quantumly

The total energy (kinetic and potential energy) of the classical harmonic

oscillator is

E = p2

2m
+ 1

2
mω2x2, (4.9)
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where p is the momentum.

To construct the quantum mechanical Hamiltonian, we replace p with p̂ and

x with x̂

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (4.10)

Our goal is to solve the energy eigenvalue equation

Ĥ ∣ψ⟩ = E ∣ψ⟩ (4.11)

to find the allowed energies in the system. To do that, we first need to recall

the definitions of position and momentum operators:

x̂ = x

p̂ = −i~ d
dx

(4.12)

It is best to express the differential equation in the wave function picture:

− ~2

2m

d2ψE(x)
dx2

+ 1

2
mω2x2ψE(x) = EψE(x) (4.13)

There are two approaches for solving 4.13. There is an analytic method, where

we seek for a power series solution. The other method - algebraic in nature - is

more elegant and is used in many places in physics especially in quantum field

theory. Hence we concentrate on the latter.

4.2.1 Algebraic Method

The idea of the algebraic method is quite easy. It relies on the identity:

a2 + b2 = (a − ib)(a + ib). (4.14)

The Hamiltonian 4.10 has the appropriate form to use the above identity:

Ĥ = 1
2
mω2(x̂2 + p̂2

m2ω2 )

= ~ω{mω
2~ [x̂2 + p̂2

m2ω2 ]}
(4.15)

We define two new operators:

â =
√
mω

2~
(x̂ + i p̂

mω
), (4.16)
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we call 4.16 the lowering operator or the annihilation operator and

â� =
√
mω
2~ (x̂� − i p̂

�

mω
)

=
√
mω
2~ (x̂ − i p̂

mω
)

(4.17)

which we call the rising operator or the creation operator. Let’s take a closer

look at their properties.

4.2.2 Properties of Raising and Lowering Operators

The first observation is that 4.16 and 4.17 are not Hermitian, so they do not

correspond to observables, but they are quite useful. Let’s try to find out what

their product is:

â�â = mω
2~

(x̂2 + p̂2

m2ω2
) − 1

2
, (4.18)

ââ� = mω
2~

(x̂2 + p̂2

m2ω2
) + 1

2
. (4.19)

From 4.18 and 4.19 we clearly see that â and â� do not commute. In fact, their

commutator is

[â, â�] = ââ� − â�â = 1. (4.20)

Now, let’s calculate the commutators of â and â� with the Hamiltonian:

[Ĥ, â] = −~ωâ, (4.21)

[Ĥ, â�] = +~ωâ�. (4.22)

Comparing 4.15 and 4.18 we see that the Hamiltonian written in terms of these

new operators is

Ĥ = ~ω(â�â + 1

2
). (4.23)

4.2.3 Energy

Now, we can explain why â is called the lowering operator and â� is called

the rising operator. Let’s see what happens when the Hamiltonian Ĥ acts on a

ket â ∣E⟩, where ∣E⟩ is some energy eigenstate:

Ĥ(â ∣E⟩ ) = Ĥâ ∣E⟩ . (4.24)
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Using the commutation relation 4.21 we can rewrite the above equation as

Ĥ(â ∣E⟩ ) = (âĤ − ~ωâ) ∣E⟩
= (E − ~ω)(â ∣E⟩ ).

(4.25)

The equation 4.25 says, that the ket â ∣E⟩ is also an eigenstate of the of the

Hamiltonian, but with an energy eigenvalue E − ~ω:

Ĥ ∣E − ~ω⟩ = (E − ~ω) ∣E − ~ω⟩ . (4.26)

That’s why we call â the lowering or the annihilation operator. There’s one

problem here. We cannot say that â ∣E⟩ is equal to ∣E − ~ω⟩, but only that these

kets are proportional. We will find this constant of proportionality soon.

Now let’s repeat the above calculations for â�.

Ĥ(â� ∣E⟩ ) = (â�Ĥ + ~ωâ) ∣E⟩
= (E + ~ω)(â ∣E⟩ )

(4.27)

The equation 4.27 says, that the ket â� ∣E⟩ is also an eigenstate of the of the

Hamiltonian, but with an energy eigenvalue E + ~ω:

Ĥ ∣E + ~ω⟩ = (E + ~ω) ∣E + ~ω⟩ . (4.28)

That’s why we call â� the rising or the creation operator.

We refer to the operators â and â� collectively as ladder operators, because

they take us up and down a ladder of energy eigenstates, as illustrated in 4.2

Even though the picture 4.2 may suggest that we could climb down the

ladder arbitrarily low, it is not really the case as the total energy of a system

cannot be negative. Hence, there must exist the lowest energy state ∣Elowest⟩,
such that

â ∣Elowest⟩ = 0. (4.29)

Let’s act the Hamiltonian Ĥ on this state:

Ĥ ∣Elowest⟩ = ~ω(â�â + 1

2
) ∣Elowest⟩ . (4.30)

Since we have the condition 4.29, the above expression reduces to

Ĥ ∣Elowest⟩ =
1

2
~ω ∣Elowest⟩ . (4.31)
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Figure 4.2: Ladder of energy eigenststes.

Therefore, the lowest possible energy of the quantum mechanical oscillator is

Elowest =
1

2
~ω. (4.32)

We also call it the ground state energy.

To generate next energy, we act with the raising operator on the ground

state ∣Elowest⟩, which produces an eigenstate with energy increased by ~ω. If we

repeat this process, we obtain all allowed energies of the oscillator:

En = ~ω(n + 1

2
), n = 0,1,2,3, . . . (4.33)

It is convenient to label the enegy eigenstates as ∣En⟩ = ∣n⟩. These states satisfy

the energy eigenvalue equation

Ĥ ∣n⟩ = En ∣n⟩ = (n + 1

2
)~ω ∣n⟩ , (4.34)

are normalized (since ∣En⟩’s are)

⟨n ∣n⟩ = 1, (4.35)
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and are mutually orthogonal

⟨m ∣n⟩ = δmn. (4.36)

If we write the Schrödinger equation using ladder operators:

~ω(â�â + 1

2
) ∣n⟩ = ~ω(n + 1

2
) ∣n⟩ , (4.37)

we can notice a very useful identity:

â�â ∣n⟩ = n ∣n⟩ . (4.38)

The equation 4.38 suggests that we define the operator â�â as the number op-

erator N̂

N̂ = â�â, (4.39)

such that

N̂ ∣n⟩ = n ∣n⟩ . (4.40)

The eigenvalues of the number operator are the same integers n that were used

to label the energy eigenstates ∣n⟩. Finally, we can write the Hamiltonian in

terms of the number operator:

Ĥ = ~ω(N̂ + 1

2
) (4.41)

Now it’s time to go back to the problem of normalization of ladder oper-

ators. From our previous discussion we know that kets â ∣E⟩ and ∣E − ~ω⟩ are

proportional. Let’s write the proportionality equation using developed notation:

â ∣n⟩ = c ∣n − 1⟩ . (4.42)

Consider the norm of the state â ∣n⟩:

∣â ∣n⟩ ∣2 = ( ⟨n∣ â�)(â ∣n⟩ ) = ⟨n∣ â�â ∣n⟩ . (4.43)

As â�â = N̂ , we can write

∣â ∣n⟩ ∣2 = ⟨n∣ N̂ ∣n⟩ = n, (4.44)

from which we obtain

∣â ∣n⟩ ∣2 = ∣c ∣n − 1⟩ ∣2. (4.45)
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Hence

n = ∣c∣2 (4.46)

and we get the normalization constant. Since an overall phase is not measurable,

we can choose c to be positive and real and obtain

â ∣n⟩ =
√
n ∣n − 1⟩ . (4.47)

Similarly, for the raising operator we get

â� ∣n⟩ =
√
n + 1 ∣n + 1⟩ . (4.48)

4.2.4 Wave Functions

If we knew one of the eigenstates, then we could use ladder operators to

generate others. Luckily, we can use the ladder termination equation

â ∣0⟩ = 0. (4.49)

It’s best to work in wave function representation, so we rewrite 4.49:

âψ0(x) = 0. (4.50)

Now, we use the definition of the lowering operator

√
mω

2~
(x̂ + i p̂

mω
)ψ0(x) =

√
mω

2~
(x + ~

mω

d

dx
)ψ0(x) = 0. (4.51)

A simple rearrangement of terms in 4.51 leads to

d

dx
ψ0(x) = −

mωx

~
ψ0(x) (4.52)

The solution (after normalization) of 4.52 is

ψ0(x) = (mω
π~

)
1
4

e−
mωx2

2~ , (4.53)

which is the ground state of the quantum harmonic oscillator.

To generate states above the ground state we use eq. 4.48, which can be

rewritten as

∣n + 1⟩ = 1√
n + 1

â� ∣n⟩ (4.54)
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We apply 4.54 to the ground state to obtain

∣1⟩ = 1√
1
â� ∣0⟩ , (4.55)

∣2⟩ = 1√
2
â� ∣1⟩ = 1√

2 ⋅ 1
(â�)2 ∣0⟩ , (4.56)

∣3⟩ = 1√
3
â� ∣2⟩ = 1√

3 ⋅ 2 ⋅ 1
(â�)3 ∣0⟩ , (4.57)

and more generally

∣n⟩ = 1√
n!

(â�)n ∣0⟩ . (4.58)

Using the definition of â� and substituting 4.53 for ∣0⟩ we get

ψn(x) =
1

n!
[
√
mω

2~
(x − ~

mω

d

dx
)]
n

ψ0(x) (4.59)

When we apply the creation operator to the Gaussian function ψ0(x) n

times, we obtain the Gaussian function multiplied by a polynomial of order n.

These polynomials are called Hermite polynomials. To simplify calculations it

is common to define a dimensionless variable

ξ ≡
√
mω

~
x. (4.60)

The ground state and the general states are written as

ψ0(x) = (mω
π~

)
1
4

e
−ξ2

2 (4.61)

and

ψn(x) = (mω
π~

)
1
4 1√

2nn!
Hn(ξ)e

−ξ2

2 . (4.62)

The first few Hermite polynomials are:

H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

H4(ξ) = 16ξ4 − 48ξ2 + 12.

(4.63)

The first seven wave functions are plotted in fig. 4.3
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Figure 4.3: The harmonic oscillator wave functions [7]
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