
Generation QI

Summer School

on Quantum Cryptography

Theory of Quantum Cryptography



Contents

1 Introduction to Quantum Mechanics 3

1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Axioms of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Quantum measurements: POVMs . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Classical and quantum information theory basics . . . . . . . . . . . . . 9

1.1.4 Quantum correlations: entanglement . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Examples of quantum protocols: Dense coding and teleportation . . . . . 14

1.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Quantum Key Distribution (QKD) 19

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Threats to classical cryptography by quantum computing . . . . . . . . . 19

2.1.2 Quantum Key Distribution protocols . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Security of the BB84 protocol . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Bounds on key rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Device Independent (DI) and Semi-Device Independent QKD 32

3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Characterising Black Boxes . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Bell inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Nonlocal games and quantum boxes . . . . . . . . . . . . . . . . . . . . . 42

3.1.5 Device Independent Self Testing . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.6 Device Independent QKD [18] . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.7 Loopholes in Bell experiments . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1



3.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Quantum secured-internet challenges and achievement 60

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Upper Bounds on Key Rates in QKD 66

5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



Chapter 1

Introduction to Quantum Mechanics

1.1 Theory

1.1.1 Axioms of quantum mechanics

What is the goal of a physical theory?:

1. Provide a framework to describe and predict the behavior of physical systems

2. Provide some explanation behind that framework

Note: Our focus is on quantum cryptography, so by no means is this an exhaustive presentation.

In quantum mechanics, this is achieved by introducing a set of axioms. The role of the axioms

is to answer the following questions

1. How to describe a physical system?

2. What kind of information can we get about a system?

3. What kind of changes can a system undergo?

4. What to do if there are several systems?

Axiom 1: States (question 1)

A state is a complete description of a physical system. In quantum mechanics, a state is

a ray in a Hilbert space.

Definition 1 Hilbert space
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(a) Vector space(vector addition and multiplication by scalars) over complex numbers

(we will use the Dirac’s notation |ψ⟩).

Example 1 2 dimensional space

|0⟩ ≡

1
0


|1⟩ ≡

0
1


(b) Equipped with an inner product ⟨ψ|ϕ⟩ that maps an ordered pair of vectors to C

numbers with properties:

1. Positivity ⟨ψ|ψ⟩ > 0 for |ψ⟩ ≠ 0

2. Linearity ⟨ψ| (a |ϕ1⟩+ b |ϕ2⟩) = a ⟨ψ|ϕ1⟩+ b ⟨ψ|ϕ2⟩

3. Skew symmetry ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗

(c) Complete in the norm (important in infinite-dimensional spaces to ensure conver-

gence of eigenvectors expansion).

(d) Ray: equivalence class of vectors. Vectors belonging to the class differ by a multi-

plicative complex scalar factor (it is convenient to work choose ⟨ψ|ψ⟩ = 1)

Remark 1 A combination of two states is a valid state (superposition principle)

|ϕ1⟩ , |ϕ2⟩ −→ a |ϕ1⟩+ b |ϕ2⟩ .

Remark 2 In superposition only the relative phase matters

a |ϕ1⟩+ eiβb |ϕ2⟩ ≡ eiα(a |ϕ1⟩+ eiβb |ϕ2⟩)

∀α ∈ [0, 2π), a, b ∈ R

Axiom 2: Observables (question 2)

A self-adjoint operator representing a property of a physical system that can be measured.

Definition 2 A self-adjoint operator

Linear map on a vector space that its own adjoint

(a) Maps vectors to vectors

A : |ψ⟩ → A |ψ⟩
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(b) Linear

A(a |ϕ1⟩+ b |ϕ2⟩) = aA |ϕ1⟩+ bA |ϕ2⟩

(c) Adjoint A†

⟨ψ|Aϕ⟩ = ⟨A†ψ|ϕ⟩

(d) Self-adjoint A†

A = A†,

⟨ψ|Aϕ⟩ = (⟨ϕ|Aψ⟩)∗,∀ |ψ⟩ , |ϕ⟩

(A+B)† = A† +B†

(AB)† = B†A†

(e) Self-adjoint operators have a spectral representation

A =
∑
a

λaEa,

where λa are eigenvalues (real numbers) and Ea are eigenvectors (orthogonal projec-

tors). Eigenvectors satisfy:

EaEa′ = δa,a′Ea

E†a = Ea .

In Dirac’s notation projectors are represented as

Ea = |a⟩ ⟨a|

A |a⟩ = a |a⟩ .

Axiom 3: Measurement (question 3)

The measurement outcome of an observable A on a state is an eigenvalue of A. The

post-measurement state is the corresponding eigenvector.

|ψ⟩ result a−→ Ea |ψ⟩
||Ea |ψ⟩ ||

.

(a) Spectral decomposition of A

A =
∑
a

λaEa .
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(b) Probability of outcome

Prob(a) = ||Ea |ψ⟩ ||2 = ⟨ψ|Ea|ψ⟩ .

(c) Post-measurement state

|ψ⟩ result a−→ Ea |ψ⟩
||Ea |ψ⟩ ||

.

(d) Mean value

⟨A⟩ =
∑
a

aProb(a) =
∑
a

a ⟨ψ|Ea|ψ⟩ = ⟨ψ|A|ψ⟩ .

Axiom 4: Dynamics (question 3)

Time evolution of a closed system is described by a unitary operator

|ψ(t)⟩ = U(t, t
′
) |ψ(tt)⟩ ,where

U(t, t
′
)†U(t, t

′
) = U(t, t

′
)U(t, t

′
)† = I

Schrödinger equation governs infinitesimal time evolution

d

dt
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ .

Axiom 5: Composite systems (question 4)

For two quantum systems A and B a joint state space of a composite is constructed as

tensor product of individual systems. The same applies for a joint state.

|ψA⟩ ∈ HA, |ψB⟩ ∈ HB ,

|ψA⟩ ⊗ |ψB⟩ ∈ HA ⊗HB .

Example 2 Two qubits system

|0⟩A ⊗ |0⟩B = |00⟩AB =


1

0

0

0

 .
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There can be situations, in which:

(a) States are not rays in Hilbert space and then no full information about a state is available,

for example

Figure 1.1: Density operator

ϱ = p1 |ψ1⟩ ⟨ψ1|+ |ψ2⟩ ⟨ψ2| .

(b) Measurements are not orthogonal projectors.

(c) Evolution is not unitary.

More generally the state is given as a density operator that is

1. Self-adjoint

ϱ = ϱ†

2. Positive

⟨ψ|ϱ|ψ⟩ ≥ 0 ∀ |ψ⟩

3. Trace one

tr(ϱ) = 1

Axiom 3: Measurement (density operators)

(a) Spectral decomposition of A

A =
∑
a

λaEa .

(b) Probability of outcome

Prob(a) = tr(Eaϱ) .
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(c) Post-measurement state

ϱ
result a−→ EaϱEa

tr(Eaϱ)
.

(d) Mean value

⟨A⟩ =
∑
a

aProb(a) =
∑
a

atr(Eaϱ) = tr(Aϱ) .

Axiom 5: Composite systems (density operators)

ϱA ∈ HA, ϱB ∈ HB ,

ϱA ⊗ ϱB = ϱAB ∈ HA ⊗HB .

What to do if we have description of a composite system, and we want to focus on a single

one?

Partial trace

ϱ = trA(ρAB) =
∑
i

⟨i|BρAB|i⟩B

1.1.2 Quantum measurements: POVMs

Positive operator-valued measure (POVM) is a set of measurement operators {Ma}ma=0 (effects):

1. Effects are hermitian

Ma =M †
a

2. Effects are positive

Ma ≥ 0

3. Effects form a complete set ∑
a

Ma = I

4. Probability of outcome

Prob(a) = tr(Maρ)

In contrast to a projective measurement, for POVM the post measurement state is not uniquely

defined. Naimark theorem states that POVMs can be implemented in terms of protective

measurements and post-processing of outcomes on higher dimensional Hilbert spaces.
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1.1.3 Classical and quantum information theory basics

Classical information theory

Consider random variableX. Each realization x ofX belongs to an alphabet X with probability

pX(x). Information content of a particular realization x is defined as

i(x) = − log(pX(x)) .

It measures "surprise" that one has learning the outcome of a random experiment. Information

content concerns a particular x, what about random variable X? This is captured by entropy

H(X) ≡ −
∑
x

pX(x) log(X(x)) ,

For realizations with 0 probability 0 log 0 = 0.

Theorem 1 Shannon’s noiseless coding Entropy provides a rate of information compression

rate.

Entropy properties:

1. Non-negativity

H(X) ≥ 0

2. Concavity: r.v.

XB pB(x) = q × px1 + (1− q)× px2(x)

H(XB) ≥ qH(X1) + (1− q)H(X2)

3. Minimal value

H(X) = 0 ⇔ pX(x) = δx,x0

4. Maximal value

H(X) ≤ log |X |
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Types of entropies

(a) Binary entropy

Source with two outcomes p(0) = p, p(1) = 1− p

h2(p) = −p log p− (1− p) log(1− p) .

Figure 1.2: Binary entropy

(b) Conditional entropy

Two random variables X,Y . What is the uncertainty of X provided that one knows Y ?

H(X|Y ) = −
∑
x,y

pX,Y (x, y) log
(
pX|Y (x|y)

)
.

One has H(X) ≥ H(X|Y ).

(c) Joint entropy

Two random variables X,Y . What is the uncertainty of X and Y ?

H(X, Y ) = −
∑
x,y

pX,Y (x, y) log(pX,Y (x, y)) .

(d) Mutual information

Measures correlations between r.v. X and Y , quantifies reduction of uncertainty of X

due to dependence of Y on X

I(X;Y ) ≡ H(X)−H(X|Y ) .
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In terms of probability distributions is the following

I(X;Y ) = −
∑
x,y

log

(
pX,Y (x, y)

pX(x)pY (y)

)
.

It is symmetric

I(X;Y ) = I(Y ;X) .

Quantum information theory

What are quantum counterparts of those quantities? What is their interpretation? Quantum

entropy (von Neumann) entropy

H(ϱA) = −tr(ϱA) log(ϱA) .

Suppose that the state has eigendecomposition

ϱ =
∑
a

pa |ψa⟩ ⟨a| ,

then

H(ϱA) = −
∑
a

pa log pa .

Quantum entropy has two interpretations: it quantifies uncertainty about the expected infor-

mation gains in qubits upon receiving and measuring the sent state or it is quantum channel

capacity, alternatively. Quantum entropy properties:

1. Non-negativity

H(ϱ) ≥ 0

2. Concavity in density operators.

3. Minimal value

H(ϱ) = 0 ⇔ ϱ = |ψ⟩ ⟨ψ|

4. Maximal value

H(ϱ) ≤ log d .
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Types of quantum entropies

(a) Conditional quantum entropy

H(A|B)ϱ ≡ H(AB)ϱ −H(B)ϱ ,

one has

H(A)ϱ ≥ H(A|B)ϱ .

(b) Quantum mutual information

I(A;B) ≡ H(A)ϱ +H(B)ϱ −H(AB)ϱ ,

one has

I(A;B) = H(A)ϱ −H(A|B)ϱ = H(B)ϱ −H(B|A)ϱ .

1.1.4 Quantum correlations: entanglement

Consider a composite quantum system ϱAB What kind of correlations this state can have?

1. Classical correlations

ϱAB =
∑
i,j

pX,Y (xi, yi) |xiyi⟩ ⟨xiyi|

2. Quantum correlations: Entanglement

The state is entangled if it is not separable

|ψ⟩AB ̸= |ϕ⟩A ⊗ |φ⟩B .

For mixed states it is the following

ϱAB ̸=
∑
i

piϱA ⊗ ϱB .
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Example 3 Entangled states

• Bell states

|Ψ±⟩ = 1√
2
(|00⟩ ± |11⟩) ,

|Φ±⟩ = 1√
2
(|01⟩ ± |10⟩) .

• GHZ state

|GHZ⟩ = 1√
2
(|000⟩ ± |111⟩) .

How to check whether the state is entangled?

(a) Peres-Horodecki criterion

Consider a bipartite state

ϱAB =
∑
ijkl

= qijkl |i⟩ ⟨j|A ⊗ |k⟩ ⟨l|B ,

one defines partial transpose in the following way

ϱTBAB ≡
∑
ijkl

= qijkl |i⟩ ⟨j|A ⊗ (|k⟩ ⟨l|B)
T

= qijkl |i⟩ ⟨j|A ⊗ |l⟩ ⟨k|B

= qijlk |i⟩ ⟨j|A ⊗ |k⟩ ⟨l|B

The state is separable if its partial transposition is a quantum state (has non-negative

eigenvalues). It is necessary and sufficient in dimension (2,2) and (2,3).
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(b) Entanglement witnesses

Figure 1.3: Entanglement witnesses. [8]

1.1.5 Examples of quantum protocols: Dense coding and teleporta-

tion

Dense coding

How to send 2 classical bits using one qubit?

Alice and Bob share a quantum state

1√
2
(|00⟩+ |11⟩)AB

Alice encoding

00 −→ |Ψ+⟩

01
σ3−→ |Φ+⟩

10
σ1−→ |Ψ−⟩

11
iσ2−→ |Ψ−⟩ ,

14



where

σ1 =

0 1

1 0


σ2 =

0 −i

i 0


σ3 =

1 0

0 −1

 .

are Pauli matrices. Alice sends her part to Bob, Bob performs measurement

00 −→ |Ψ+⟩

01
σ3−→ |Φ+⟩

10
σ1−→ |Ψ−⟩

11
iσ2−→ |Ψ−⟩ .

Teleportation

Alice wants to communicate unknown quantum state to Bob How to do it? She can measure the

state and transfer gained information via classical communication means, but such approach

has poor because of no-cloning theorem. Thee is another way: she shares with Bob entangled

state. She can move unknown qubit to Bob, erasing it at her site.

Alice qubit state

|q⟩A = a |0⟩A + b |1⟩A

Alice and Bob shared state:

1√
2
(|00⟩+ |11⟩)AB

The total state:

|ψ⟩AA′B =
1

2
[|Ψ+⟩AA′ (a |0⟩B + b |1⟩B)

+ |Ψ−⟩AA′ (a |0⟩B − b |1⟩B)

+ |Φ+⟩AA′ (a |1⟩B + b |0⟩B)

+ |Φ−⟩AA′ (a |1⟩B − b |0⟩B)]

15



Alice measures her total state in the Bell basis obtaining to result corresponding to (correction

needed, Alice needs to send measurement result to Bob)

|Ψ+⟩AA′ Bob state is a |0⟩B + b |1⟩B

|Ψ−⟩AA′ Bob state is a |0⟩B − b |1⟩B
σ3−→ a |0⟩B + b |1⟩B

|Φ+⟩AA′ Bob state is a |1⟩B + b |0⟩B
σ1−→ a |0⟩B + b |1⟩B

|Φ−⟩AA′ Bob state is a |1⟩B − b |0⟩B
iσ2−→ a |0⟩B + b |1⟩B .

16



1.2 Assignments

Assignment 1.2.1

Verify that the map (x, y) =
∑N

i xi, y
∗
i is an inner product (x, y ∈ CN).

Assignment 1.2.2

Which of the following density operators represents a quantum state?

1

2

1 1

1 −1

 , 1

2

1 i

i 1

 , 1

2

 1 i

−i 1

 ,
0.1 i

−i 0.9



Assignment 1.2.3

Suppose V is a vector space with basis vectors 0 and 1,and A is a linear operator from V to

V such that A|0⟩ = |0⟩ and A|1⟩ = −|1⟩.Give a matrix representation for A, with respect

to the input basis |0⟩, |1⟩. Provide the form of that operator in the |+⟩, |−⟩ basis, where

|+⟩ = 1√
2
(|0⟩+ |1⟩), and |−⟩ = 1√

2
(|0⟩ − |1⟩).

Assignment 1.2.4

Express Pauli operators in outer product notation.

Assignment 1.2.5

What are possible measurement outcomes and their probabilities when observable σZ is mea-

sured on the state |+⟩?

Assignment 1.2.6

What are possible measurement outcomes and their probabilities when observable σZ ⊗ σZ is

measured on the state 1√
2
(|00⟩+ |11⟩)?

Assignment 1.2.7

Show that 1√
2
(|00⟩+ |11⟩) cannot be written as |a⟩|b⟩ for any qubit states |a⟩, |b⟩.
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Assignment 1.2.8

Consider a state p|Ψ⟩⟨Ψ| + (1 − p) I
4
, where |Ψ⟩ = 1√

2
(|00⟩+ |11⟩) . Using Peres–Horodecki

criterion determine values of p, for which this state is entangled.

Assignment 1.2.9

Define two boxes: The Popescu-Rohrlich box is characterized by the following probability

distribution:

PPR(ab | xy) =


1
2

a⊕ b = xy

0 otherwise

where ⊕ is addition modulo 2, and perfectly correlated (independent of the inputs) classical

box, i.e.

P c(ab | xy) =


1
2

a⊕ b = 0

0 otherwise
(1.1)

Consider a box defined as follows:

PPR
ϵ = ϵPPR + (1− ϵ)P c

• Verify that this box is a proper non-signaling box

• Calculate value of CHSH polynomial given by E00+E01+ E10−E11, where Exy = P (a =

b | xy)− P (a ̸= b | xy) is the correlator for the pair of measurements x, y.
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Chapter 2

Quantum Key Distribution (QKD)

2.1 Theory

2.1.1 Threats to classical cryptography by quantum computing

Mathematical problems that are believed to be hard are the main building block of modern

cryptography.

Problem 1 (Prime factorization) Let N = pq for some odd prime numbers p, q which are

not know. Find a proper factor of N .

Problem 2 (Discrete logarithm) Suppose g is an element of a group G. A number x that

satisfies the following equation

gx = b

is called a discrete logarithm of b to the base g. Given g and b, find x.

Both of them can be efficiently solved on quantum computer by algorithms proposed by P.Shor

in [15]. It turns out that above problems can be generalised to so called Hidden Supgroup

Problem (see [9]).

Problem 3 (Hidden supgroup problem) Let f be a function from a finitely generated group

G to a finite set X such that f is constant on the cosets of a supgroup K, and distinct on each

coset. Given a quantum black box for performing the unitary transform U |g⟩|h⟩ = |g⟩|h⊕f(g)⟩,

for g ∈ G, h ∈ X, and ⊕ an appropriately chosen binary operation on X, find a generating set

for K.
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Order-finding, discrete logarithms, and many other problems are instances of this problem.

When the group G is abelian, then above problem can be solved effectively on quantum com-

puter by an algorithm similar to Shor’s algorithm. This implies that large-scale quantum

computer is a real threat to modern protocols like RSA, DH or ECDH.

Attacks against symmetric cryptography also had been considered. For example H.Kuwakado

and M.Maorii [10] introduced a quantum algorithm (similar to Simon’s algorithm [17]) that

can effectively solve so called distinguishing problem.

Problem 4 (Distinguishing problem) Let V be either the 3-round Feistel cipher with internal

permutations (FP) or a random permutation (RP) on {0, 1}2n. Determine whether V is the

FP or the RP by making queries to V . Notice that the query to the inverse mapping V −1 is not

allowed.

This result is not as spectacular as Shor’s result because it does not hack any commonly used

cryptographic protocol, but it gives some insights that symmetric protocols have to be reviewed

in terms of resistance against quantum computing.

2.1.2 Quantum Key Distribution protocols

The most famous Quantum Key Distribution Protocol is BB84 proposed by H.Bennet and

G.Brassard in [3].

Protocol 1 (BB84)

1. Alice prepares 2n qubits, each randomly in one of the four states |0⟩, |1⟩, |+⟩, |−⟩ and

sends them along the quantum channel to Bob.

2. For each qubit that Bob receives, he chooses at random one of two bases ({|0⟩, |1⟩} or

{|+⟩, |−⟩}) and measures the qubit with respect to that basis.

3. Alice tells Bob via classical channel which basis she used for each qubit. They keep the

bits where Bob has used the same basis for his measurement as Alice for the preparation.

Those n bits are forming the so-called sifted key.

4. Alice and Bob choose a subset of the sifted key to estimate the error rate. They do so

by announcing publicly the bit values of the subset. If they differ in too many cases, they

abort the protocol.
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5. Finally, Alice and Bob obtain a joint secret key from the remaining bits by performing

classical error correction and privacy amplification.

Roughly speaking, security of the above protocol is based on no-cloning theorem and the ob-

servation that whenever Eve conducts a measurement in a wrong basis, she introduces a dis-

turbance which can be detected by Alice and Bob.

Some implementations of the BB84 protocol are vulnerable to so called Photon Splitting Num-

ber attack. Due to that, SARG04 protocol has been introduced [14].

Protocol 2 (SARG04)

1. Alice sends a sequence of n signals to Bob. For each signal, Alice randomly chooses one of

the four sets ({(|0⟩, |+⟩), (|0⟩, |−⟩), (|1⟩, |+⟩), (|1⟩, |−⟩)}) and sends one of the two states

in the set to Bob.

2. For each signal, Bob performs the polarization measurement using one of the two bases

({|0⟩, |1⟩} or {|+⟩, |−⟩}) randomly.

3. For each signal, Alice publicly announces the choice of the set from which the state was

selected.

4. For each signal, Bob compares his measurement outcome to the two states in the set.

5. If his measurement outcome is orthogonal to one of the states in the set, then he concludes

that the other state has been sent, which is conclusive result. On the other hand, if his

measurement outcome is not orthogonal to either of the states in the set, he concludes

that is is an inconclusive result. He broadcast if he got the conclusive result or not for

each signal.

6. Alice randomly chooses some bits as test bits and announces their locations. Bob estimates

the bit error rate from the test bits by taking the ratio of the number of incorrect conclusive

test bits to the total number of conclusive test bits.

7. Alice and Bob retain only the conclusive untested bits.

8. They perform bit error correction and privacy amplification on the remaining bit string.

In this protocol, Alice and Bob do not publicly announce their measurement bases. They only

announce which measurement are conclusive and which are not, so even if Eve intercepts and
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stores some photons, she still does not know how to measure them.

The BB84 protocol uses 4 different states, but H.Bennet’s made an observation that using

so much states is redundant! So he introduced in [2] a QKD protocol that uses only two

non-orthogonal states |0⟩ and |+⟩.

Protocol 3 (B92)

1. Alice sends a string of photons in a |0⟩ or |+⟩ state, chosen randomly. |0⟩ state will

correspond to the bit 0 whereas |+⟩ state will correspond to the bit 1.

2. Bob randomly chooses between {|0⟩, |1⟩} and {|+⟩, |−⟩} bases, to measure the polarisation

of the received photon.

3. If Bob is measuring in the {|0⟩, |1⟩}, there are two possible circumstances: if the photon is

in the state |0⟩, then the measurement outcome will be |0⟩ with the probability 1 whereas

if the incident photon is the state |+⟩, then the measurement outcome will be either |0⟩

or |1⟩ with the probability 0.5. Thus, if only the outcome is |1⟩, Bob can infer confidently

that the state of the photon is |+⟩.

4. Similar argument will be applicable if Bob is measuring in the diagonal basis, where the

measurement outcome |−⟩ will indicate that the incident state of the photon is |0⟩.

5. After the transmission of the string of photons, Bob announces the instances in which the

measurement outcome was either |1⟩ or |−⟩ and the rest are discarded by both of them.

6. For the verification of eavesdropping, Bob and Alice publicly share part of the generated

random bit string and if the error crosses a tolerable limit, the protocol is aborted. If not,

they are now able to generate a secure and symmetric key between them.

The three protocols above are of the prepare and measure type but in 1991 A.Ekert introduced

[7] a QKD protocol that is based on entanglement.

Protocol 4 (E91)

1. The source centre chooses the EPR pair |Ψ−⟩ = 1/
√
2(|01⟩+ |10⟩), sends the first particle

to Alice and second particle to Bob.
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2. Alice makes measurement with a basis randomly chosen between {σz, σx, σx+σz√
2

} whereas

Bob makes a measurement with a basis randomly chosen between {σx, σz−σx√
2
, σx+σz√

2
}. They

record the measurement results and broadcast the measurement basis which they used,

through the classical channel.

3. They divide the measurements results into two groups - one is the test qubits G1 where

they chose {σx, σz} (Alice’s bases) and {σx+σz√
2
, σz−σx√

2
} (Bob’s bases). Second group G2

consists of qubits where they chose the same measurement bases.

4. The group G1 is used to calculate if CHSH inequality is violated. If CHSH ≪ 2
√
2 they

abort the protocol. If CHSH ≈ 2
√
2 then the measurements outcomes of qubits from G2

group are a raw key.

5. They perform bit error correction and privacy amplification on the raw key.

Whenever Alice and Bob measure the value S ≈ 2
√
2, they can be sure to share a maximally

entangled state and that the secret key obtained from measurement is random and did not

exist before the measurement.

2.1.3 Security of the BB84 protocol

Generally proving security of a particular protocol is a hard task, because the proof has to take

into account every possible type of attack. Much easier approach is to start with something

which is secure and then reduce it to the desired protocol without loss of security. Using that

approach P.Shor and J.Preskill proved the security of the BB84 protocol [16].

They start with the entanglement based QKD protocol in which EPR pairs are securely dis-

tributed from Alice to Bob and the secret key is generated from measuring them. In the first

modification EPR pairs are replaced with states encoded in randomly selected CSSz,x(C1, C2)

code, which are defined as follows.

Definition 1 Suppose C1 and C2 are [n, k1] and [n, k2] are classical linear codes such that

C2 ⊂ C1 and C1, C
⊥
2 both correct t errors. We define quantum states |x+ C2⟩ as

|x+ C2⟩ :=
1√
|C2|

∑
y∈C2

|x+ y⟩.

A vector space spanned by the above vectors is called CSS(C1, C2) code (CSS acronym refers to

Calderbank-Shor-Steane). It is a quantum [n, k1 − k2] code correcting errors on up to t qubits.
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We consider a family parameterized by bit strings z, x equivalent to CSS(C1, C2), which we

denote as CSS(C1, C2)z,x. Codewords in CSS(C1, C2)z,x have the following form

|ξvk,z,x⟩ =
1√
|C2|

∑
w∈C2

(−1)z·w|vk + w + x⟩.

After the first modification the secure QKD protocol is obtained. But this protocol requires

quantum memory and usage of quantum computer which is not desired. The second modifi-

cation of the protocol allows Bob to measure his qubit instantly after receiving them and also

allows to not to take into account phase errors in used CSS codes. After few minor technical

modifications the protocol is reduced to BB84 without loss of security.

It is strongly recommended to go through the proof following section 12.6.5 from [11] which

explains it with details.

Reader interested more in quantum error correcting codes and CSS codes in particular should

go through section 10.4.2 from [11].

2.1.4 Bounds on key rate

Problem 5 How to obtain a secret key from a cqq-state

ρABE =
∑
x∈X

P (x)|x⟩⟨x|A ⊗ ρBEx

using local quantum operations and one-way classical communication? How much key can we

obtain?

At first we will consider an asymptotic case, namely we will take n-copies of cqq-states

(ρABE)⊗n =
∑
xn

P (xn)|xn⟩⟨xn|A ⊗ ρBExn .

We want to quantify the answer for above question but to do that we need few definitions.

Definition 2 A one-way key distillation protocol consist of

• A channel T , such that xn T−→ (ℓ,m) where ℓ ∈ {1, . . . , L} (steering variable) and m ∈

{1, . . . ,M} (possible values of key).

• A family of POVMs D(ℓ) = (D
(ℓ)
m )Mm=1 on Bob side parameterized by ℓ.

It is called (n, ε)-protocol if
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• P (KA ̸= KB) ⩽ ε.

• ∥
∑M−1

m=0 P (K = m)|m⟩⟨m| − 1
M

∑M−1
m=0 |m⟩⟨m|∥1 ⩽ ε.

• There is a state σ0 such that for all m

∥
∑

xn,ℓ P (X
n = xn,Λ = ℓ|K = m)|ℓ⟩⟨ℓ| ⊗ ρExn − σ0∥1 ⩽ ε.

Definition 3 We call R an achievable rate if for all n there exist (n, ε)-protocol with ε → 0

and 1/n logM → R as n→ ∞.

We define the one-way secret key capacity of a cqq-state ρ as

K→(ρ) := sup{R : R achievable}.

Lower bound for one-way secret key capacity of a cqq-state was proved by I.Devetak and

A.Winter in [6].

Theorem 1 For every cqq-state ρ,

K→(ρ) ⩾ I(A : B)− I(A : E).

They proved above theorem by introducing particular protocol of secret key distillation.

There are also bounds for one-shot case, which means that only one copy of a state can be

used. One-shot lower and upper bounds on secret key rates has been proved by J.Renes and

R.Renner in [12]. To formulate their theorem, definition of smoothed min- and max-entropies

is needed.

Definition 4 Let ρ = ρAB be a bipartite density operator. The min-entropy of A conditioned

on B is defined by

Hmin(A|B)ρ := − inf
σB
D∞(ρAB∥IdA ⊗ σB)

where the infimum ranges over all normalized density operators σB on subsystem B and where

D∞(τ∥τ ′) := inf{λ ∈ R : τ ⩽ 2λτ ′}.

Definition 5 Let ρ = ρAB be a bipartite density operator. The max-entropy of A conditioned

on B is defined by

Hmax(A|B)ρ := sup
σB

2 logF (ρAB, IdA ⊗ σB),

where the supremum is over positive, normalized states σB and F (ρ, σ) := ∥√ρ
√
σ∥1 is the

fidelity of ρ and σ.
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Definition 6 Let ρ = ρAB be a bipartite density operator ε ⩾ 0. The ε-smooth min- and

max-entropy of A conditioned on B are given by

Hε
min(A|B)ρ := sup

ρ′
Hmin(A|B)ρ′ ,

Hε
max(A|B)ρ := inf

ρ′
Hmax(A|B)ρ′ ,

where the supremum ranges over all density operators ρ′ = ρ′AB which are ε-close to ρ.

With above definitions we can finally formulate Renner-Renes bounds on one-shot secret key

rate.

Theorem 2 Given any ε ⩾ 0 and a state ψABE =
∑

x px|x⟩⟨x|A ⊗ φBEx and ε = ε1 + ε2,

ε′ = ε′1 + ε2,

ℓε+ε
′

secr (A;B|E)ψ ⩾ sup
(U,V )←A

[
H
ε′1
min(U |EV )ψ −Hε1

max(U |BV )ψ

]
− 4 log

1

ε2
− 3

ℓεsecr(A;B|E)ψ ⩽ sup
(U,V )←A

[
H
√
2ε

min(U |EV )ψ −H
√
2ε

max(U |BV )ψ

]
.
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2.2 Assignments

Assignment 2.2.1

Fill the tables for BB84, B92 and SARG04 protocols. In this exercises H denotes {|0⟩, |1⟩}

basis and D denotes {|+⟩, |−⟩} basis.

BB84:

Alice bits 0 1 1 0 1 1 0 0

Alice basis H H D H D D D H

Alice

qubits
|0⟩ |1⟩ |−⟩ |0⟩ |−⟩ |−⟩ |+⟩ |0⟩

Bob basis H D H H D D H H

Bob qubits |0⟩ |+⟩ |1⟩ |0⟩ |−⟩ |−⟩ |1⟩ |0⟩

Bob bits

Final key

B92:

Alice bits 1 0 0 1 0 0 1 1

Alice

qubits
|+⟩ |0⟩ |0⟩ |+⟩ |0⟩ |0⟩ |+⟩ |+⟩

Bob basis H D H H D D H H

Bob qubits |1⟩ |+⟩ |0⟩ |0⟩ |−⟩ |−⟩ |1⟩ |0⟩

Bob bits

Final key

SARG04:

Alice bits 0 1 1 0 1 1 0 0

Alice qubits |0⟩ |+⟩ |−⟩ |1⟩ |+⟩ |−⟩ |0⟩ |1⟩

Bob basis H H H D D H H D

Bob qubits |0⟩ |1⟩ |1⟩ |−⟩ |+⟩ |1⟩ |0⟩ |+⟩

Alice classical

information

|0⟩,

|+⟩

|0⟩,

|+⟩

|0⟩,

|−⟩

|1⟩,

|+⟩

|1⟩,

|+⟩

|1⟩,

|−⟩

|0⟩,

|−⟩

|1⟩,

|−⟩

Bob bits

Final key
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Assignment 2.2.2

Suppose that Eve conducts naive intercept-resend attack on the BB84 protocol. What is the

probability the her attack won’t be detected?

Assignment 2.2.3

Suppose that Eve conducts naive intercept-resend attack on the B92 protocol. What is the

probability the her attack won’t be detected?

Assignment 2.2.4

Suppose that Alice uses a basis {sin θ|0⟩+cos θ|1⟩, sin
(
θ + π

2

)
|0⟩+cos

(
θ + π

2

)
|1⟩} for some angle

θ instead of {|+⟩, |−⟩} in the BB84 protocol. Show that the probability that Eve’s attack will

be detected is now

p =
1

4
sin2(2θ).

What angle maximizes this probability?

Assignment 2.2.5

Using the measurement directions of the E91 protocol, show that CHSH inequality is violated

when Alice and Bob share a singlet state |Ψ−⟩ = 1/
√
2(|01⟩+ |10⟩). Adding white noise to the

projector onto the singlet, what is the maximal proportion of noise that still leads to a violation

of the CHSH inequality?

Observables used in E91 protocol: A1 = σz, A2 = σx, B1 =
σz+σx√

2
, B2 =

σz−σx√
2

.

S := |⟨A1, B1⟩+ ⟨A1, B2⟩+ ⟨A2, B1⟩ − ⟨A2, B2⟩|

Assignment 2.2.6

Show that the code defined by

|x+ C2⟩ =
1√
|C2|

∑
y∈C2

(−1)u·y|x+ y + v⟩

and parameterized by u and v are equivalent to CSS(C1, C2) in the sense that they have the

same error-correcting properties.

Assignment 2.2.7
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Determine the subsystems of a state

ρ = p|Φ+⟩⟨Φ+|AB +
1− p

4
IdAB,

where |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) and calculate von Neumann entropies S(A) and S(B).

Assignment 2.2.8

Calculate mutual information for the following state

|ϕ⟩AB =
1√
2
|00⟩AB +

1

2
|01⟩AB +

1

2
|11⟩AB.

Hint: Write down a density matrix and determine states of subsystems using explicit formulas

for partial trace.

Assignment 2.2.9

Calculate the Devetak-Winter lower bound for one-way secret key capacity of the following

states:

1. ρABE =
[

1
N

∑N
i=0 |i⟩⟨i|A ⊗ |i⟩⟨i|B

]
⊗ ρE,

2. ρABE = 1
9
|0⟩⟨0|A⊗|0⟩⟨0|B⊗|1⟩⟨1|E+4

9
|1⟩⟨1|A⊗|1⟩⟨1|B⊗|0⟩⟨0|E+4

9
|2⟩⟨2|A⊗|2⟩⟨2|B⊗|0⟩⟨0|E,

3. ρABE = 1
N

∑N
i=0 |i⟩⟨i|A ⊗ |i⟩⟨i|B ⊗ |i+ 1 mod N⟩⟨i+ 1 mod N |E.

Hint: Note that the state |i + 1 mod N⟩⟨i + 1 mod N |E can be obtained from |i⟩⟨i|E
by applying a local unitary transform.

Assignment 2.2.10

Show that if ρAB is a product state ρAB = ρA ⊗ ρB, then:

Hmin(A|B)ρ = − log2 ∥ρA∥∞,

where ∥ρA∥∞ is a norm of the greatest eigenvalue of ρA.

Assignment 2.2.11

Show that if ρAB is a pure state, then:

Hmin(A|B)ρ = −2 log2Tr
√
ρA.
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Assignment 2.2.12

Show that

Hε
max(A|B)ρ = −Hε

min(A|C)ρ

for a purification ρABC of a state ρAB.

Hint: min- and max-entropy are dual in the sense that

Hmax(A|B)ρ = −Hmin(A|C)ρ

for a pure state ρABC .

Assignment 2.2.13

To calculate mutual information I(A : B) of a state ρAB = p|Φ+⟩⟨Φ+|AB + 1−p
4
IdAB, one has

to calculate von Neumann entropy of the whole state. Calculate it.

Assignment 2.2.14

Using the definition of codewords in CSS codes, show that |x + C2⟩ = |x′ + C2⟩ if and only if

x− x′ ∈ C2.

Assignment 2.2.15

Show that if ρAB is a product state ρAB = ρA ⊗ ρB, then:

Hmax(A|B)ρ = 2 log2Tr
√
ρA.

Assignment 2.2.16

Show that if ρAB is a pure state, then:

Hmax(A|B)ρ = log2 ∥ρA∥∞,

where ∥ρA∥∞ is a norm of the greatest eigenvalue of ρA.

Hint
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Explicit formulas for partial trace for 2-qubit system. Let

ρAB =


a b c d

e f g h

i j k l

m n o p

 .

Then

ρA = TrB ρAB =

 a+ f c+ h

i+ n k + p


ρB = TrA ρAB =

 a+ k b+ l

e+ o f + p

 .
Hint

Observe that density matrix of a state p|Φ+⟩⟨Φ+|AB + 1−p
4
IdAB is

p+1
4

0 0 p
2

0 1−p
4

0 0

0 0 1−p
4

0

p
2

0 0 p+1
4

 .

Observe also that calculating eigenvalues of above matrix is equivalent to calculating eigenvalues

of the following two matrices  p+1
4

p
2

p
2

p+1
4

 and

 1−p
4

0

0 1−p
4

 .

31



Chapter 3

Device Independent (DI) and Semi-Device

Independent QKD

3.1 Theory

3.1.1 Introduction

Story so far

• Classical cryptography based on the limitations on the adversary’s computational capa-

bility!

• Quantum Cryptography provides a solution!

• Quantum Cryptography provide security based only on laws to physics!

• Quantum processes are not visible to the naked eye, need to trust the devices!

• Solution: Device Independent Quantum Cryptography, the strongest form of security

known to mankind!

• Classical cryptography based on the limitations on the adversary’s computational capa-

bility!

• Quantum Cryptography provides a solution!

• Quantum Cryptography provide security based only on laws to physics!

• Quantum processes are not visible to the naked eye, need to trust the devices!
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• Solution: Device Independent Quantum Cryptography, the strongest form of security

known to mankind!

It is either AI or DI!Device Independent Outlook On Physics

Device independent outlook on physics

Quantum Mechanics:

• The flagship physical theory!

• Deeply mysterious!

• All set to fuel the key technological advances of the twenty-first century!

• The most precisely tested theory in the history of science!

• The universe we inhabit is governed by the laws of quantum mechanics!

A seemingly ridiculous request: Forget, or at least suspend all what you have learnt about

Quantum Mechanics!

A first principles approach

• No assumptions about the internal working of the device

• Instead of characterising a device by its hardware, we treat it like a black box!

• The black boxes have some buttons!

• The user can press these buttons and get some outputs!

• Goal: To characterise the device based solely on empirical input-output statistics! A

first principles approach

• No assumptions about the internal working of the device

• Instead of characterising a device by its hardware, we treat it like a black box!

• The black boxes have some buttons!

• The user can press these buttons and get some outputs!

• Goal: To characterise the device based solely on empirical input-output statistics!
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Figure 3.1: Black box

3.1.2 Characterising Black Boxes

• The input-output behaviour of a black box is described by a conditional probability

distribution pO|I , which specifies the probability of obtaining an outcome O = o when

the input selected by the user was I = i!

• Must satisfy:

positivity: p(O = o|I = i) ≥ 0,∀i, o

completeness:
∑
o

p(O = o|I = i) = 1,∀i

• Examples: Let O be a random variable over the set o ∈ {0, 1} and I be a random variable

over the set i ∈ 0, 1

White-Noise (WN) Box: p(O = o|I = i) = 1
2
, ∀i, o

Deterministic (D) Box: p(O = o|I = i) ∈ 0, 1, ∀i, o

Bipartite Black Boxes

Figure 3.2: Bipartie black box
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• Alice and Bob each have access to one part of a bipartite box

• Relevant to QKD protocols

• The two parts of the bipartite box are separated in space, i.e., Alice and Bob each have

access to their part of the box but cannot access the other party’s box!

• Without making any assumptions about the inner workings of the boxes, Alice and Bob

input x, y to retrieve outputs a, b. This yields in the input-output statistics of the box!

• The boxes are completely described by the conditional probability distribution pAB|XY ,

where X(Y ) and A(B) are random variables describing Alice’s (Bob’s) input and output,

respectively.

• In general, there are no restrictions on pAB|XY (a, b|x, y), except:

positivity: p(a, b|x, y) ≥ 0 ∀a, b, x, y and

completeness: p(a, b|x, y) = 1 ,∀x, y.

Bell scenarios

Figure 3.3: Bell scenarios

• We use [nD] to denote the set {0, . . . , d− 1}

• A bipartite Bell scenario is a tuple (nX , nY , nA, nB) specifying the inputs and outputs of

Alice and Bob!

• The (2, 2, 2, 2) Bell scenario is the famous CHSH scenario!

• The (3, 2, 2, 2) Bell scenario is the Bell scenario for Ekert-like DIQKD protocols!
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The no-signalling conditions

Figure 3.4: The no-signalling conditions

• The no-signaling conditions translate to the requirement that the individual components

of the boxes produce an output independently of the other component, i.e., Alice’s (Bob’s)

output should be independent of Bob’s (Alice’s) input.

• Alternatively, the no-signaling conditions are the requirement that the marginal proba-

bility distributions pA|X , pB|Y are well-defined probability distributions!

Alice to Bob no-signalling condition

Figure 3.5: Alice to Bob no-signalling condition

• Bob looking at the statistics pB|Y produced by his part of the bipartite box should not

be able to infer anything about Alice’s input, i.e.,

∀b, y, x, x′
p(b|y) = p(b|x, y) =

∑
a

p(a, b|x, y) = p(b|x′
, y) =

∑
a

p(a, b|x′
, y)
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Figure 3.6: Bob to Alice no-signalling condition

Bob to Alice no-signalling condition

• Alice looking at the statistics pA|Y produced by his part of the bipartite box should not

be able to infer anything about Alice’s input, i.e.,

∀a, y, x, x′
p(a|x) = p(a|x, y) =

∑
b

p(a, b|x, y) = p(a|x, y′
) =

∑
b

p(a, b|x, y′
)

No-signalling polytope(NS)

Figure 3.7: As the positivity, completeness and the no-singalling conditions constitute linear

constraints on some real number {p(a, b|x, y)} , the set of boxes which satisfy the no-signalling

conditions forms a convex polytope, i.e., a convex set with inite number of extremal points.
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Hidden variable (classical) explantions

Let Alice and Bob share classical random variable Λ distributed according to a probability

Figure 3.8: Hidden variable (classical) explantions.

distribution pΛ , such that, it explains the statistics of their boxes,

p(a, b|x, y) =
∑
λ

p(λ)p(a, b|x, y, λ)

• Parameter Independence (PI)

Parameter independence or no-signalling at the Λ-level requires the distribution to remain

no-signalling even when one has access to the hidden variable Λ , such that,

∀b, y, x, x′
, λ

p(b|y, λ) = p(b|x, y, λ) =
∑
a

p(a, b|x, y, λ) = p(b|x′
, y, λ) =

∑
a

p(a, b|x′
, y, λ)

and

∀a, x, y, y′
, λ

p(a|x, λ) = p(a|x, y, λ) =
∑
b

p(a, b|x, y, λ) = p(a|x, y′
, λ) =

∑
b

p(a, b|x, y′
, λ) .

• Outcome Independence (OI)

Outcome independence (OI) requires Bob’s (Alice’s) outcome to be independent of Alice’s

(Bob’s) outcome when condition on the inputs x, y , and the hidden variable λ , such that,

a, b, x, y, λ,

p(a|x, y, b, λ) = p(a|x, y, λ)

p(b|x, y, a, λ) = p(b|x, y, λ) .
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Local Hidden Variable (LHV) explantions

Local Hidden Variable ( LHV ) explanations are hidden variable explanations which satisfy

parameter independence and outcome independence,

LHV ≡ PI ∧OI

Recall that, a hidden variable explanation of box implies that,

p(a, b|x, y) =
∑
λ

p(λ)p(a, b|x, y, λ),

using Bayes’ Theorem,

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, y, b, λ)p(b|x, y, λ),

next, using OI

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, y, λ)p(b|x, y, λ),

finally, using PI , we arrive the well-known definition of LHV explanations,

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, λ)p(b|y, λ) .

Local (classical) boxes and deterministic resolution

In a Bell scenario (nX , nY , nA, nB) the total number of deterministic boxes for Alice is (nX)
nA

, for Bob is (nY )
nB .

Total number of deterministic bipartite is (nX)
nA(nY )

nB .

Definition 3 Characterization of local behaviours

A Box pAB|XY is local if and only if it is a convex mixture of local deterministic processes,

p(a, b|x, y) =
∑
j

(nX)
nA

∑
k

(nY )
nBqj,kδa=fi(x)δb=gk(y) ,

with λ ≡ (j, k), qj,k ≥ 0, ∀j, k
∑
j,k

qj,k = 1 .
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The local polytope (L)

Figure 3.9: The set of all local boxes forms a convex polytope with (nX)
nA(nY )

nB deterministic

boxes as extremal points! Because of PI , the local polytope is a subset of the no-signalling

polytope L ⊆ NL.

Nonlocal boxes

Figure 3.10: No signalling boxes that lie outside local polytope, are referred as nonlocal boxes!.A

nonlocal box pAB|XY ∈ NS\L.
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3.1.3 Bell inequalities

The notion of Bell inequalities

A criterion that separates some nonlocal box from all local boxes is generically called Bell

inequality. Usually one considers linear Bell inequalities, i.e., criteria of the form,

I(pAB|XY ) =
∑
a,b,x,y

νa,b,x,yp(a, b|x, y) ≤ IL

The functional I(pAB|XY ) is called the Bell functional and IL is called the local bound of Bell

functional! I(pAB|XY ) > IL implies that pAB|XY ∈ NS\L!

Tight Bell inequalities

• The most natural candidates for Bell inequalities are facets of the local polytope!

• Their number is inite, hence, it is in principle possible to list them all out!

• The non-trivial facets of the local polytope are called tight Bell inequalities!

Figure 3.11: Tight Bell inequalities

Do not underestimate LHV explanations!

LHV models have enormous explanatory potential,

• The behaviour pA|X of one player can always be reproduced with LHV!

• LHV models can explain the behaviour presented in popular for as an astonishing feat

of quantum entanglement, namely, two players always produce the same outcome when

queried with the same input!
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• LHV models can explain all bipartite behaviours in Bell scenarios wherein one of the pari-

ties has only one inputs, i.e., Bell scenarios of the form (1, nY , nA, nB) and (nX , 1, nA, nB).

Simplest nontrivial Bell scenario: CHSH scenario

• The simplest Bell scenario where in L ⊂ NS is (2, 2, 2, 2), referred to as the Clauser-

Horne-Shimony-Holt (CHSH) scenario!

• In this scenario, the no-signaling polytope is embedded in R8 !

• The local polytope in the CHSH scenario has 16 extremal points!

• The local polytope in the CHSH scenario has 24 facets!

• 16 trivial positivity facets!

• 8 non trivial facets, all equivalent up to relabelling to celebrated Clauser-Horne-Shimony-

Holt (CHSH) Bell inequality,

S = S(pAB|XY ) = ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2

where

⟨AxBy⟩ =
∑
a,b

(−1)a⊗bp(a, b|x, y) .

3.1.4 Nonlocal games and quantum boxes

Nonlocal games

Figure 3.12: Nonlocal games
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• Bell inequalities can also be phrased as nonlocal games!

• The Referee sends questions x, y to Alice and Bob respectively, based on priors qXY , and

decides according to their answer a, b whether they have won (w(a, b, x, y) = 1) or lost

(w(a, b, x, y) = 0) the game.

• The winning probability for a given box pAB|XY is,

ω(pAB|XY ) =
∑
a,b,x,y

q(x, y)w(a, b, x, y)p(a, b|x, y) ≤ ωL .

Quantum boxes

Figure 3.13: Quantum boxes

• Note that even though we assume that the bipartite box is quantum, we do not make

assumptions on the internal workings of the box!

• The assumption that there is a bipartite state ρAB ∈ B+(HA⊗HB) is no limitation since

we do not restrict the dimension of the Hilbert spaces!

The set of quantum boxes

• Given a Bell scenario, the quantum set Q is defined as the set of all quantum boxes!

• The quantum set Q is convex, but does not form a polytope!

• Characterising Q is extremely difficult!

Maximal violation of the CHSH inequality

• The celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality,

S = S(pAB|XY ) = ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2

where

⟨AxBy⟩ =
∑
a,b

(−1)a⊗bp(a, b|x, y) .
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Figure 3.14: The set of quantum boxes

• Consider a quantum strategy entailing the maximally entangled state |ψ+⟩, with the

following measurements: If x = 0 = 0 , Alice measures the Z -operator, and if x = 1 ,

she measures the X-operator.

• For Bob, y = 0 corresponds to measuring (Z+X)
2

, and y = 1 corresponds to measuring
(Z−X)

2
.

• This strategy violates the CHSH inequality maximally, i.e., it achieves S = 2
√
2 > 2, and

2
√
2 is often referred to as the Tsirelson’s bound!

• A no-signalling box, called the PR-Box can achieve a CHSH value, S = 4 , ∀a, b, x, y,

pPR ≡ p(a, b|x, y) =


1
2
, if x · y = a⊕ b

0, else.

• The quantum box that achieves the Tsirelson’s bound is,

pAB|XY =
1√
2
pPR + (1− 1√

2
)pWN ,

where pWN ≡ p(a, b|x, y) = 1
4
, ∀a, b, x, y.
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CHSH scenario

Figure 3.15: CHSH scenario

3.1.5 Device Independent Self Testing

• Self-testing refers to the art of making inferences based exclusively on observed statistics!

• Self-testing powers Device Independent Cryptography and all other applications!

• Question: what can we say about the underlying quantum realisationQ ≡ (|ψAB⟩ , {Πx
a}a,x, {Π

y
b}b,y),

given that we observe the box pAB|XY !

• Inherent limitation: statements true only up to local isometries and auxiliary systems.

• The maximal violation of CHSH, S = 2
√
2 , self-tests the quantum realization

Q ≡ (|ϕ+⟩ , {Z,X}, { (Z+X)
2

, (Z−X)
2

}) , up to local isometries!

Lemma 1 Jordan’s Lemma Given any two hermitian operators â0, â1 ∈ B(H) on an arbitrary

Hilbert space H with eigenvalues ±1 , then there exists a basis in which both operators are block

diagonal with blocks of dimension at most two, and specifically,

â0 =
⊕
A

σAz
⊕
ξ

λξ,0 |ξ⟩ ⟨ξ|

â1 =
⊕
A

[
cos θAσ

A
z + sin θAσ

A
x

]⊕
ξ

λξ,1 |ξ⟩ ⟨ξ|
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• The one-dimensional blocks
⊕
ξ

λξ,1 do not contribute to the violation of the Bell inequality,

thus, can be discarded.

• Furthermore, by applying the unitary transformations all the operators can be brought

in the following form

â0 = Z

â1 = cos θAZ + sin θAX

3.1.6 Device Independent QKD [18]

Consider the following QKD protocol,

• Alice and Bob have access to a bipartite quantum box, with binary inputs x, y ∈ in{0, 1}

and binary outputs a, b ∈ {0, 1},

• They observe the probability distribution,

p(a, b|0, 0) = p(a, b|1, 1) = 1

2
, if a = b

p(a, b|0, 1) = p(a, b|1, 0) = 1

4
, ∀a, b.

• This is the distribution Alice and Bob observe if they implement the entanglement-based

version of the BB84 protocol, wherein they share the maximally entangled two-qubit

state, |ψ+ = 1√
2
(|00⟩+ |11⟩)⟩ and measure in either the X basis or in the Z basis.

Hacking a device-dependent QKD

In the Device Independent setting there are no assumptions on the Hilbert space dimension of

the shared quantum system!

• Consider the following tripartite state in the Hilbert space C4 ⊗ C4 ⊗ C4

ρABE =
∑

z0,z1∈[2]

|z0z1⟩A ⟨z0z1| ⊗ |z0z1⟩B ⟨z0z1| ⊗ |z0z1⟩E ⟨z0z1|

• If Alice and Bob measure Z ⊗ I whenever x = y = 0 , and I ⊗ Z whenever x = y = 1,

they retrieve the same probability distribution!

• Notice, that Eve has a perfect copy of the local state, and hence, can perfectly guess the

secret key, effectively rendering the protocol insecure!
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DIQKD origins

• The initial idea of exploiting violation of Bell inequalities to prove the security of a QKD

protocol goes back to the protocol proposed by Ekert in 1991.

• Mayers and Yao introduce self-testing, i.e., maximal violation of a Bell inequality implies

the complete characterisation of the quantum devices (up to local isometries on auxiliary

degrees of freedom).

• The irst security proof of a DIQKD protocol is attributed to Barrett, Hardy, and Kent.

Although the protocol was not useful in practice, the work demonstrated that secure

DIQKD was achievable in principle.

• Numerous works leading up to practical implementations last year!

DIQKD protocol

Figure 3.16: DIQKD protocol

• A source distributed states to Alice and Bob,

• Alice chooses between three different measurements Ax , with x ∈ [3] , while Bob chooses

between two different measurements By , with y ∈ [2] , and they retrieve outcomes

a, b ∈ {+1,−1} .

• Alice and Bob have access to an authenticated classical communication channel.

• The source as well as the measurement devices are assumed to be controlled by the

Eavesdropper.
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• The raw key is extracted from the outcomes of the pair {A0, B1} , such that Quantum

Bit Error Rate (QBER), Q , is defined as the probability that Alice and Bob get different

outcomes when measuring the pair A0, B1, i.e.

Q = p(a ̸= b|0, 1)

• From QBER the parties estimate the amount of classical communication required for the

error correction phase.

• The measurements A1,A2,B0,B1 are used to evaluate the value of CHSH inequality

S = ⟨A1B0⟩+ ⟨A1B1⟩+ ⟨A2B0⟩ − ⟨A2B1⟩

• Based on Q and S, Alice and Bob estimate Eve’s information!

A DIQKD protocol can be divided into three phases:

1. Quantum transmission phase:

The parties use their devices to perform measurements and general their respective n -bit

strings, −→a 0 = a1a2 . . . an and
−→
b 0 = b1a2 . . . bn.

2. Parameter estimation phase:

The parties exchange classical information to estimate Bell violation S and the QBER

Q . If the parameters allow for the generation of a secure key, i.e., the Bell violation is

sufficiently high and the QBER is sufficiently low, they proceed. Otherwise, they abort

the protocol.

3. Classical post-processing phase:

The parties use the estimate they have on Eve’s potential knowledge of the key to perform

error correction and to produce the raw keys and perform privacy amplification to generate

the final secure key.

A particular implementation:

• Alice and Bob share a noisy maximally entangled state,

ρAB = p |ϕ+⟩ ⟨ϕ+|+ (1− p)
I
4

• The measurement are

A0 = B0 = Z

A1 =
1

2
(Z +X), B2 = X

A2 =
1

2
(Z −X)
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• The CHSH violation and QBER for this protocol are, S = 2
√
2 and Q = 1

2
(1− p) , such

that,

S = 2
√
2(1− 2Q).

• Important to note the security is only based on the observed value of S and Q and not

on the particular implementation!

Security Analysis against collective attacks

• In DIQKD we only have access to the input-output statistics the devices produces, and

we need to prove security based exclusively on the observed statistics!

• One way, is finding a lower bound on the set key rate r given by the Devetak-Winter rate

rDW

r ≥ rDW = I(A0 : B1)− χ(B1 : E) ,

where I(A0 : B1) = H(A0) +H(B1) −H(A0, B1), and χ(B1 : E) is the Holevo quantity

given by

χ(B1 : E) = H(ρB)−
1

2

∑
b1∈{+1,−1}

H(ρE|b1) ,

where ρE = TrAB(|ψABE⟩ ⟨ψABE|) represents the state of Eve’s quantum system, and

ρE|b1 denotes the state of Eve’s system conditioned on Bob obtaining the result b1 when

measuring B1.

• The optimal collective attack is to prepare the states such that |ψABE⟩ is the purification

of ρAB.

• Without loss of generality, we assume uniform marginals, i.e.,

p(a|x) = p(b|y) = 1

2
,∀a, b, x, y.

• Consequently, the mutual information between Alice and Bob has the expression

I(A0 : B) = 1− h2(Q),

where h2 is the binary entropy!

• Using Jordan’s lemma, the second term can be bounded from above as follows,

χ(B1 : E) ≤ h2

(
1 +

√(
S
2

)2 − 1

2

)
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• Consequently, the lower bound for the secret key rate for the DIQKD protocol is given

by,

r ≥ rDI = 1− h2(Q)− h2

(
1 +

√(
S
2

)2 − 1

2

)

• Let’s compare the device-independent lower bound rDI with a device-dependent lower

bound. For the device-dependent case, for the particular implementation, we have that,

r ≥ rDD = 1− h2(Q)− h2

(
Q+

S

2
√
2

)

Figure 3.17: The secret key rate is strictly lower in the device-independent setting (as expected),

but it is still possible to extract a secret key up to a QBER of ≈ 7.1% . The plot also shows

critical QBER of 11% for the BB84 protocol.

Explicit attack

• Eve sends the state,

ρAB(S) =
1 + C

2
Pϕ+ +

1− C

2
Pϕ−

where C =
√(

S
2

)2 − 1 to the parties.

• She programs the measurements to be,

A1 =
1√

1 + C2
Z +

C√
1 + C2

X ,

A2 =
1√

1 + C2
Z − C√

1 + C2
X ,

B1 = Z ,

B2 = X

and A0 is the Z-measurement with probability 1 − 2Q and white-noise with probability

2Q.
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• For this attack, B1 = Z, the Holevo quantity turns out to be,

χ(B1 : E) = h2

(
1 +

√(
S
2

)2 − 1

2

)

saturating the lower bound rDI on the secret key rate!

Finite-Key Analysis

• In a real experiment the protocol can only run for a finite number of rounds!

• To deal with the finite number of rounds, the main task is to bound the min-entropy,

Hmin = (Kn
A|E),

which determines the length of the secret key.

• Collective attacks allow us to work under the IID (Independent and Identically Dis-

tributed) assumption, which greatly simplifies the security analysis!

• In the IID scenario, each round of the protocol is independent of the other rounds and

all rounds are identical.

• This implies that the state ρAB of Alice and Bob’s system after M rounds of the protocol

is given by

ρMAB = ρ⊗MAB .

• In the IID scenario, Alice’s raw key is given by Kn
A = K1 . . . Kn, where Ki are IID random

variables.

• Eve’s information is given by E = E1 . . . En , where Ei are IID quantum side information

about Ki.

• To bound the von Neumann entropy H(Kn
A|KE) , we use the chain rule and the IID

assumption, such that,∑
i

H(Ki|E1, . . . , En, K1, . . . , Ki−1) =
∑
i

H(Ki|Ei) = nH(Ki|Ei) ,

thereby reducing the analysis of the entire protocol to the analysis of a single round.
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• To bound the smooth min-entropy we use Tomamichel et al.’s result of Quantum Asymp-

totic Equipartition Property, which states that,

Hϵ
min(K

n
A|E) = nH(K1|E1)− cϵ

√
n

where cϵ is a correction term independent of n.

• These simplifications only work because of the IID assumptions!

• Such strong assumptions must be avoided to get the ultimate form of security!

Security Analysis against coherent attacks

• Coherent attacks are the most general form of attacks!

• Eve can act differently in each round and so can the devices!

• de Finetti-type theorems or the post-selection technique reduce the security proofs of

coherent attacks to a security proof for collective attacks for Device-Dependent QKD.

• As these techniques require that the Hilbert space dimension of the systems be known,

they can no longer be applied in the Device-Independent QKD.

• Losing the IID assumptions implies that there can be interactions between the individual

rounds of the protocol, hence the random variable Kn
A and the quantum side information

E can no longer be expressed in the product form!

• Even worse, the requirements for the QAEP are now no longer fulfilled!

Entropy Accumulation Theorem (EAT)

• The Entropy Accumulation Theorem (EAT) fills the gap in the DIQKD case!

• Similar to QAEP, the EAT reduces the analysis of the whole protocol to that of a single

round!

• Every round of the protocol is represented by a quantum channel M[i] that takes the state

Ri−1 as input and outputs classical data Oi and Si as well as the quantum state Ri which

is input to the next round Mi+1 of the protocol.

• The system is entangled with its purifying system E.

• From the classical data Oi , Si the parties can determine CHSH value!
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• From the outputs, Oi they generate the secret key!

• The EAT provide a bound on the entropy by relating it to the worst case that can happen

in each individual round of the protocol!

• Consider a single round i of the protocol isolated from the remaining rounds.

• The global state of the system σ , consists of the input state Ri−1 to the channel Mi and

the purifying system R
′ at this instant.

• The output of the channel Mi consists of some classical data Oi . Si and a quantum state

Ri .

• The conditional von Neumann entropy is hence evaluated for the states (Mi ⊗ IR)σ,

abbreviated as Mi(σ):

H(Oi|SiR
′
)Mi(σ)

• Without IID assumption, we don’t have access to the local state σ , so we take the

minimum over all possible states σ that are compatible with the observed statistics.

• The EAT then bounds the min-entropy as,

Hϵ
min(O

n|Sn, E)ρ ≥
n∑
i=1

min
σ
H(Oi|Si, R

′
)σ −O(

√
n)

• The bound is similar to the QAEP, the first term is linear in n , and the term proportional

to
√
n vanishes in the limit of large n (since we divide by n to compute the key rate).

Figure 3.18: Entropy Accumulation Theorem (EAT).
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3.1.7 Loopholes in Bell experiments

• Just like any test, Bell tests have loopholes, which can be exploited by Eve to hack DIQKD

protocols!

• What is required to perform a loophole-free Bell test?

• In general, we need to assure the following two properties are fulfilled:

1. No information about the input of one party is allowed to be known to the other

party before the output is produced!

2. The detection efficiency have to be sufficiently high!

• Loopholes arise when one or both of these requirements are not fulfilled in the experi-

mental design or setup, which affects the validity of the results!

The locality loophole

• If the first requirement is not fulfilled, the very premises needed for the validity of a Bell

inequality violation are not given!

• There exists a signalling classical model that accounts for the apparent non-locality of

observed correlations!

• This is the locality loophole.

• Alice and Bob have to be separated far enough (at least tens of meters) and measurements

have to be performed fast enough such that no light-speed communication can affect the

respective measurements!

• One needs to send entangled states over such distance without doing much damage!

• Preferred substrate: photons!

• However, photonics experiments suffer from the issue of photon losses, which gives rise to

the detection loophole!

The detection loophole

• In practice, the measurement devices are imperfect and sometimes fail to detect the

incoming photons!
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• This can exploited by an adversary to manipulate the input-output statistics that Alice

and Bob observe!

• With faulty detectors of efficiency ηA = ηB = 1
4
, LHV models can achieve S = 4!

• Possible resolutions:

1. Keep everything: the “no-click” event (⊥) as an additional outcome and check mem-

bership to the local polytope of a larger Bell scenario!

2. Assign already existing measurement outcome to the “no-click” event (⊥→ 0) !

The detection loophole: Tilted Bell inequalities

• In a CHSH experiment, suppose Alice’s detection efficiency is ηA , and Bob’s detection

efficiency is ηB , and the parties use the assignment strategy (⊥→ +1)!

• This effectively tilts the CHSH inequality,

SηAηB = ηAηBS + ηA(1− ηB)⟨A0⟩+ ηB(1− ηA)⟨B0⟩+ (1− ηA)(1− ηB)2 ≤ 2 .

Figure 3.19: Tilted Bell inequalities.

3.1.8 Conclusions

• DIQKD is a necessity!

• Although there have been experimental demonstrations, the technology is still not prac-

tical!
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• Limited to a few kilometres!

• Need of the hour to enable practical and noise-robust DIQKD across 100s of kilometres!

• The only way to ensure mass individual or institutional privacy in an AI-dominated world!
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3.2 Assignments

Assignment 3.2.1 (Non-local games and boxes)

1. Show that for any distribution pAB|XY ≡ {p(a, b|x, y)}a,b,x,y∈{0,1} the value of CHSH ex-

pression,

CHSH(pAB|XY ) ≡ ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ,

where ⟨AxBy⟩ =
∑

a,b∈{0,1}(−1)a⊕bp(ab|xy), and the success probability of CHSH non-

local game,

SCHSH(pAB|XY ) ≡
1

8

∑
a,b,x,y∈{0,1}

p(a⊕ b = x · y|xy) ,

are related as follows,

CHSH(pAB|XY ) = 8SCHSH(pAB|XY )− 4 .

2. Show that the classical strategy of always producing 0 as the output saturates the CHSH

inequality,

CHSH(pAB|XY ) ≤ 2, (3.1)

and saturates the CHSH inequality in the game form,

SCHSH(pAB|XY ) ≤
3

4
.

3. Consider a quantum strategy entailing the maximally entangled state |ϕ+⟩, with the

following measurements: If x = 0, Alice measures the Z-operator and if x = 1, she

measures the X-operator. For Bob, y = 0 corresponds to measuring (Z + X)/
√
2, and

y = 1 corresponds to measuring (Z−X)/
√
2. Show that this strategy violates the CHSH

inequality (3.1) maximally, i.e.,

CHSH(pAB|XY ) = 2
√
2

and,

SCHSH(pAB|XY ) =
2 +

√
2

4
.

4. Show that these strategies satisfy the no-signaling conditions.
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5. Show via an example that correlations satisfying the no-signaling correlations can violate

the CHSH inequality even more.

Hint

Consider a PR-box,

p(a, b|x, y) =


1
2
, if x · y = a⊕ b,

0, else.

Assignment 3.2.2 (Detection Loophole)

In optical Bell tests, the detection loophole is an issue that arises when only a small percentage

of the photons emitted are actually detected. This can be exploited by the adversary who is

trying to intercept the message sent by Alice to Bob.

1. If Alice and Bob have detectors that are not perfect and they use a strategy where they

assign a predetermined classical outcome, say (0), to every no-click outcome. For the

strategy described above which attains CHSH(pAB|XY ) = 2
√
2 with perfect detectors,

what would be the expression for the observed value of CHSH(pAB|XY ) given that the

detection efficiency for Alice is ηA and for Bob is ηB?

2. Find the critical detection efficiency η∗ for witnessing a loophole-free violation of the

CHSH inequality CHSH(pAB|XY ) ≤ 2 when ηA = η, and ηB = 1 with the set-up described

above which reaches CHSH(pAB|XY ) = 2
√
2.

3. Find the critical detection efficiency η∗ for witnessing a loophole-free violation of the

CHSH inequality CHSH(pAB|XY ) ≤ 2 when ηA = ηB = η with the set-up described

above which reaches CHSH(pAB|XY ) = 2
√
2.

Assignment 3.2.3 (DIQKD Protocols and Security)

Consider a particular implementation of the DIQKD scheme, similar to the Ekert’s protocol,

wherein Alice and Bob share the maximally entangled Bell state |ϕ+⟩ = 1√
2
(|00⟩+ |11⟩), Alice

has three measurements A0 = Z, A1 =
1√
2
(Z +X), A2 =

1√
2
(Z −X), while Bob has a couple

of measurements B1 = Z,B2 = X. Where Z,X are Pauli operators. Suppose that the parties

observe the behaviour pAB|XY ≡ {p(a, b|x, y)}a,b,x,y∈{0,1}.
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The raw key is extracted from the outcomes of the pair {A0, B1}. The Quantum Bit Error

Rate (QBER), Q, is a measure of the error rate in a quantum key distribution (QKD) system,

defined as the probability that Alice and Bob get different outcomes when extracting the raw

key,

Q = p(A ̸= B|XY ). (3.2)

Apart from QBER, the parties also take into account the value of CHSH expression,

CHSH(pAB|XY ) ≡ ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩ , (3.3)

For the protocols specified above, the lower bound for the secret key rate against collective

attacks is given by:

r ≥ 1− h2(Q)− h2

(
1 +

√
S/2)2 − 1

2

)
, (3.4)

where S is any violation of CHSH expression (CHSH(pAB|XY )), h2 is the binary entropy.

1. Find the behavior pAB|XY ≡ {p(a, b|x, y)}a,b,x,y∈{0,1} which Alice and Bob obtain as a

result of the aforementioned protocol. Consequently, find the value of QBER (3.2) and

the value of CHSH expression (3.3).

2. Consider a slightly different protocol wherein Alice and Bob share the state,

ρAB(C) =
1 + C

2
Pϕ+ +

1− C

2
Pϕ− ,

where C =
√(

S
2

)2 − 1, S is any violation of CHSH expression (CHSH(pAB|XY )), Pϕ+ =

|ϕ+⟩⟨ϕ+| , Pϕ− = |ϕ−⟩⟨ϕ−|, and |ϕ+⟩ = 1√
2
(|00⟩+ |11⟩) and |ϕ−⟩ = 1√

2
(|00⟩ − |11⟩).

The measurements are A0 = Z, A1 = 1√
1+C2Z + 1√

1+C2X, B1 = Z, A2 = 1√
1+C2Z −

1√
1+C2X, and B2 = X. Find the value of QBER (3.2) and the value of CHSH expression

(3.3) for this protocol.

3. Show that the secret key rate r (3.4) cannot be positive if CHSH(pAB|XY ) = S ≤ 2.

4. Evaluate the key rate r (3.4) for both of the aforementioned protocols.

These exercises have been inspired from [1, 18].
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Chapter 4

Quantum secured-internet challenges and

achievement

4.1 Theory
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4.2 Assignments

In every assignment, the Bell states are defined in the following way

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩) ,

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩).

Assignment 4.2.1 (Entanglement in NV centers)[4]

Using the formalism of quantum mechanics, show, how to create entanglement between two

NV centers.

Hint

The state of the electron in NV center is the following

|NVe⟩ =
1√
2
(|↑⟩+ |↓⟩)

The entangled state of the electron in NV center and the photon is the following

|NVep⟩ =
1√
2
(|↑ 1⟩+ |↓ 0⟩)

In the case when only one detector clicks the two copies of the above state are projected to the

following state:

|p⟩ = 1√
2
(|10⟩+ eiθ |01⟩) .
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Assignment 4.2.2 (Fidelity estimation from QBER)[5]

Alice and Bob share 20 copies of entangled state ρnoise = (1 − perr)ρ + perrXρX, where ρ =

|Ψ−⟩ ⟨Ψ−|. Estimate the fidelity of ρnoise using QBER for the following cases:

(a)

basis X Z Y X Y Z X X Z Y Y Z X Y X Z Z X Y X

A outcome 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

B outcome 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0

(b)

basis Y Y Z X X Y Z Z X Y Y Z X X Y X Z X Y Z

A outcome 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0

B outcome 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0

Hint

Fidelity to target state |Ψ−⟩ is equal

F (|Ψ−⟩) = 1− QBERX +QBERY +QBERZ

2
,where

QBERi ≈
#{j|xAj = xBj , rj = i}

#{j|rj = i}

Assignment 4.2.3 (Quantum error correction code)[11]

Alice sends Bob a qubit |φ⟩ = α |0L⟩+ β |1L⟩ protected against errors by Shore code

|0L⟩ ≡
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

2
√
2

,

|1L⟩ ≡
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

2
√
2

.

Assuming that on the transmission the following errors occur:

(a) Bit flip on qubits 1.

(b) Phase flip on one of the qubits 4,5,6 .
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Show, how by measuring in the basis of Pauli’s operators X and Z one can fix these errors.

Wonder, how one can detect these errors. Draw the quantum circuit that realizes the Shore

coding.

Assignment 4.2.4 (Teleportation and Entanglement Swapping)

(a) Consider Alice and Bob share a Bell pair |Φ+⟩AB = 1√
2
(|00⟩AB + |11⟩AB). Let |φ⟩A′ =

a |0⟩A′ + b |1⟩A′ , where a, b ∈ C such that |a|2 + |b|2 = 1, be a qubit state unknown to

Alice. Provide a protocol using local operations and classical communication (LOCC)

allowing Alice to teleport |φ⟩ to Bob.

Hint

Alice can perform a Bell state measurement {Φ+
A′A,Φ

−
A′A,Ψ

+
A′A,Ψ

−
A′A} and Bob can per-

form local Pauli operations X, Y , Z).

(b) Consider now three parties Alice, Charlie, and Bob, sharing Bell pairs |Φ+⟩ACA
and

|Φ+⟩CBB
, where Carlie holds CACB. Provide an LOCC protocol to distribute a Bell

pair between Alice and Bob.

(c) Consider now Alice, Charlie and Bob sharing noisy states ρpACA
:= p |Φ+

ACA
⟩ ⟨Φ+

ACA
|+ (1−

p)1
4
IACA

and ρpCBB
for some 0 ≤ p ≤ 1. Show that the entanglement swapping protocol

considered in (b) results in a state of the form ρqAB for some 0 ≤ q ≤ 1 and compute q as

a function of p.

Assignment 4.2.5 (Amplitude and phase damping channels)

Imagine that Alice sends half of Bell state |Φ+⟩ through:

(a) amplitude damping channel ,

(b) phase damping channel.

Show, how looks the state after such transmission.

Hint
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In our case, the channel is a quantum operation on one qubit state ρ described in the following

way:

ε(ρ) = E0ρE
†
0 + E1ρE

†
1 ,

where operators

EAD
0 =

 1 0

0
√
1− α

 ,

EAD
1 =

 0
√
α

0 0


for amplitude damping channel and

EPD
0 =

 1 0

0
√
1− β

 ,

EPD
1 =

 0 0

0
√
β


for phase damping channel. α and β are probabilities of losing and scattering the photon

respectively.

Assignment 4.2.6 (Entanglement purification)

Consider Alice and Bob holding two copies of the above noisy states, i.e. the initial states are

(ρpAB)
⊗2. Apply now the following purification protocol: Alice applies the unitary

|0⟩ → 1√
2
(|0⟩ − i |1⟩)

|1⟩ → 1√
2
(|1⟩ − i |0⟩)

to both of her subsystems, while Bob applies the unitary

|0⟩ → 1√
2
(|0⟩+ i |1⟩)

|1⟩ → 1√
2
(|1⟩+ i |0⟩)

on both of his subsystems. Next, Alice and Bob both apply a CNOT gate, given by a unitary

|i⟩c |j⟩t → |i⟩c |i⊕ j⟩t

for i, j ∈ {0, 1}, where c and t denote the control and target system, respectively, to their

two systems. Finally, Alice and Bob both measure their target system in a computational

basis. If their results coincide they keep the state in the control system, otherwise they abort.

Compute the probability of not aborting and the resulting state in the case of not aborting,

both depending on p.
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Assignment 4.2.7 (Filtering protocol)[13]

Perform the filtering protocol for the state ρAB = p |Φ+⟩ ⟨Φ+|+ (1− p) |01⟩ ⟨01|.

Calculate psucc, postmeasurement state ρ̂AB in case of success and its fidelity F .

Hint

The local measurement is given by POVM’s: {M0
A,M

1
A} and {M0

B,M
1
B}, where

M1
A(B) = (A1

A(B))
†A1

A(B) ,

M0
A(B) = I−M1

A(B),

A1
A =

√
ϵ |0⟩ ⟨0|+ |1⟩ ⟨1| ,

A1
B =

√
ϵ |1⟩ ⟨1|+ |0⟩ ⟨0| .
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Chapter 5

Upper Bounds on Key Rates in QKD

5.1 Theory
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5.2 Assignments

Assignment 5.2.1

Knowing that squashed entanglement Esq(ρAB) is an upper bound on (bipartite) distillable key

KD(ρAB), show that KD(ρAB) ≤ 1
2
I(A : B).

Hint

1. Esq(ρAB) := inf
{

1
2
I(A : B|E) : ρABE extension of ρAB

}
.

2. Consider a specific action of the eavesdropper.

Assignment 5.2.2

Calculate squashed entanglement Esq(ρAB) in the following cases

(a) Esq(ρA ⊗ ρB),

(b) Esq(Ψ±), where |Ψ±⟩ = 1√
2
(|00⟩AB ± |11⟩AB),

(c) Esq(ρ⊗nAB), assuming Esq(ρAB) = x.

Hint

1. I(A : B|E)ρABE
= S(ρAE) + S(ρBE) − S(ρE) − S(ρABE), where (ρ) = −Trρ log2 ρ is the

von Neumann entropy and S(ρ⊗ σ) = S(ρ) + S(σ).

2. Squashed entanglement is additive on tensor products, i.e, Esq(ρAB ⊗ σAB) = Esq(ρAB)+

Esq(σAB).

Assignment 5.2.3

Knowing that the relative entropy of entanglement Er(ρAB) is an upper bound on (device-

dependent) secret key rate KD(ρAB), the upper bound of the following

(a) KD(Ψ
+), where |Ψ+⟩ = 1√

2
(|00⟩AB + |11⟩AB).

(b) KD(αΨ
+ + (1− α)Ψ−), where |Ψ−⟩ = 1√

2
(|00⟩AB − |11⟩AB), and α ∈ [0, 1].

Hint
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Er(ρ) = infσ∈SEP S(ρ||σ), where S(ρ||σ) = Trρ log2 ρ−Trρ log2 σ and SEP is the set of separable

states.

Assignment 5.2.4

Show that relative entropy of entanglement Er(ρ) upper bounds its regularized version E∞r (ρ),

i.e.,

Er(ρ) ≥ E∞r (ρ) := lim
n→∞

1

n
Er(ρ

⊗n).

Hint

Use the following additivity property of quantum relative entropy

S(ρ1 ⊗ ρ2||σ1 ⊗ σ2) = S(ρ1||σ1) + S(ρ2||σ2).

Assignment 5.2.5

For any fixed ε ∈ (0, 1), the achievable region of secret key agreement from a single copy of an

arbitrary multipartite quantum state ρ−→
A
≡ ρA1...AM

satisfies

K
(1,ε)
D (ρ) ≤ Eε

h,GE(
−→
A )ρ

where

Eε
h,GE(:

−→
A :)ρ := inf

σ∈BS(:
−→
A :)

Dε
h(ρ||σ).

is the ε-hypothesis testing relative entropy of genuine entanglement of multipartite state ρ−→
A

,

and BS(:
−→
A :) denotes the set of biseparable states. Calculate ε-hypothesis testing relative

entropy upper bound on K(1,ε)
D (ΨW

3 ), where |ΨW
3 ⟩ = 1√

3
(|001⟩+ |010⟩+ |110⟩).

Hint

1. If ρ is a pure state and it is one of the eigenvectors of σ, i.e., there exists decomposition

σ = p0ρ+
∑

i=1 piγ
⊥
i , with

∑
i=0 pi = 1, 0 ≤ pi ≤ 1, p0 ̸= 0 and states γ⊥i orthogonal to ρ

then for any ϵ ∈ [0, 1]:

Dε
h (ρ||σ) = − log2 Tr [Ωσ] ,

with Ω = (1− ε)ρ.

2. Employ biseparable state πW := |0⟩ ⟨0| ⊗ ΦW
2 , where |ΦW

2 ⟩ = 1√
2
(|01⟩+ |10⟩).
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Assignment 5.2.6

Calculate upper bounds on the secret key rateK(iid)
DI (P ) (in the non-signaling device-independent

iid scenario) for isotropic devices Piso(ε) = (1 − ε)PR + εPR, inside (2,2,2,2) polytope, for

α ∈ [0, 0.25], using

(a) Non-signaling squashed mutual information: K(iid)
DI (P ) ≤ Î(A : B)P = maxx,y I(A : B)Px,y ,

where Px,y is a probability distribution obtained with "x,y" measurement,

(b) Nonlocality cost: K(iid)
DI (P ) ≤ NC(P ) = C(P ) log2min{|A|, |B|}, where C(P ) = min{α : P =

αP v
NL + (1 − α)PL, α ∈ [0, 1]}, P v

NL is a nonlocal vertex (extreme nonlocal device) and

PL is a local device.

Determine (estimate) region of ε where Î(A : B)Piso(ε) ≤ NC(Piso(ε)). Compare the calculated

region with "quantum" region, i.e., ε ∈ [1
2
− 1

4

√
2, 0.25].

Hint

1. The PR and PR are vertices given by

PRAB|XY (ab|xy) =

x 0 1

y b
a 0 1 0 1

0
0 1

2
0 1

2
0

1 0 1
2

0 1
2

1
0 1

2
0 0 1

2

1 0 1
2

1
2

0

PRAB|XY (ab|xy) =

x 0 1

y b
a 0 1 0 1

0
0 0 1

2
0 1

2

1 1
2

0 1
2

0

1
0 0 1

2
1
2

0

1 1
2

0 0 1
2

.

2. The mutual information of two random variables A and B with joint probability distri-

bution P is given by

I(A : B)P =
∑
a,b

P (a, b) log2
P (a, b)

P (a)P (b)
,

where P (a) =
∑

b P (a, b).

3. There exists CHSH inequality and an operation tw(·) (called twirling), such that,

• CHSH(PR) = 4, CHSH(PR) = −4,

• CHSH (Piso(ε)) = 4− 8ε, for ε ∈ [0, 1],
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• Devices for which −2 ≤ CHSH ≤ 2 are local devices.

• tw(P ) ∈ {Piso(ε)}, for all P ,

• CHSH(tw(P )) = CHSH(P ).
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